ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM deep survey in the CDFS XI. X-ray properties of 185 bright sources

98   0   0.0 ( 0 )
 نشر من قبل Kazushi Iwasawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present X-ray spectra of 185 bright sources detected in the XMM-Newton deep survey of the Chandra Deep Field South, combining the three EPIC cameras. The 2-10 keV flux limit of the sample is 2e-15 erg/s/cm2. The sources are distributed over a redshift range of z=0.1-3.8. Eleven new X-ray redshift measurements are included. A spectral analysis was performed using a simple model to obtain absorbing column densities, rest-frame 2-10 keV luminosities and Fe K line properties of 180 sources at z>0.4. Obscured AGN are found to be more abundant toward higher redshifts. Using the XMM-Newton data alone, seven Compton-thick AGN candidates are identified, which makes the Compton-thick AGN fraction to be ~4%. An exploratory spectral inspection method with two rest-frame X-ray colours and an Fe line strength indicator is introduced and tested against the results from spectral fitting. This method works reasonably well to characterise a spectral shape and can be useful for a pre-selection of Compton-thick AGN candidates. We found six objects exhibiting broad Fe K lines out of 21 unobscured AGN of best data quality, implying a detection rate of ~30%. Five redshift spikes, each of which has more than six sources, are identified in the redshift distribution of the X-ray sources. Contrary to the overall trend, the sources at the two higher-redshift spikes at z=1.61 and z=2.57 have puzzlingly low obscuration.



قيم البحث

اقرأ أيضاً

The Chandra Deep Field South (CDF-S) was observed by XMM-Newton for a total of about 3 Ms in many periods over the past decade (2001-2002 and 2008-2009). The main goal of the survey was to obtain good quality X-ray spectroscopy of the AGN responsible for the bulk of the X-ray background. We will present the scientific highlights of the XMM-Newton survey and briefly discuss the perspectives of future observations to pursue XMM deep survey science with current and forthcoming X-ray facilities.
543 - L. Ballo 2014
Although absorbed quasars are extremely important for our understanding of the energetics of the Universe, the main physical parameters of their central engines are still poorly known. In this work we present and study a complete sample of 14 quasars (QSOs) that are absorbed in the X-rays (column density NH>4x10^21 cm-2 and X-ray luminosity L(2-10 keV)>10^44 ergs/s; XQSO2) belonging to the XMM-Newton Bright Serendipitous Survey (XBS). From the analysis of their ultraviolet-to-mid-infrared spectral energy distribution we can separate the nuclear emission from the host galaxy contribution, obtaining a measurement of the fundamental nuclear parameters, like the mass of the central supermassive black hole and the value of Eddington ratio, lambda_Edd. Comparing the properties of XQSO2s with those previously obtained for the X-ray unabsorbed QSOs in the XBS, we do not find any evidence that the two samples are drawn from different populations. In particular, the two samples span the same range in Eddington ratios, up to lambda_Edd=0.5; this implies that our XQSO2s populate the forbidden region in the so-called effective Eddington limit paradigm. A combination of low grain abundance, presence of stars inwards of the absorber, and/or anisotropy of the disk emission, can explain this result.
The physical parameters of galaxies and/or AGNs can be derived by fitting their multi-band spectral energy distributions (SEDs). By using CIGALE code, we perform multi-band SED fitting (from ultraviolet to infrared) for 791 X-ray sources (518 AGNs an d 273 normal galaxies) in the 7 Ms Chandra Deep Field-south survey (CDFS). We consider the contributions from AGNs and adopt more accurate redshifts than published before. Therefore, more accurate star formation rates (SFRs) and stellar masses (M$_*$) are derived. We classify the 518 AGNs into type-I and type-II based on their optical spectra and their SEDs. Moreover, six AGN candidates are selected from the 273 normal galaxies based on their SEDs. Our main results are as follows: (1) the host galaxies of AGNs have larger M$_*$ than normal galaxies, implying that AGNs prefer to host in massive galaxies; (2) the specific star formation rates (sSFRs) of AGN host galaxies are different from those of normal galaxies, suggesting that AGN feedback may play an important role in the star formation activity; (3) we find that the fraction of optically obscured AGNs in CDFS decreases with the increase of intrinsic X-ray luminosity, which is consistent with previous studies;(4) the host galaxies of type-I AGNs tend to have lower M$_*$ than type-II AGNs, which may suggest that dust in the host galaxy may also contribute to the optical obscuration of AGNs.
We aim to study the variability properties of bright hard X-ray selected Active Galactic Nuclei (AGN) with redshift between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long XMM observation. Taking advantage of the good count statistics in the XMM CDFS we search for flux and spectral variability using the hardness ratio techniques. We also investigated spectral variability of different spectral components. The spectra were merged in six epochs (defined as adjacent observations) and in high and low flux states to understand whether the flux transitions are accompanied by spectral changes. The flux variability is significant in all the sources investigated. The hardness ratios in general are not as variable as the fluxes. Only one source displays a variable HR, anti-correlated with the flux (source 337). The spectral analysis in the available epochs confirms the steeper when brighter trend consistent with Comptonisation models only in this source. Finding this trend in one out of seven unabsorbed sources is consistent, within the statistical limits, with the 15 % of unabsorbed AGN in previous deep surveys. No significant variability in the column densities, nor in the Compton reflection component, has been detected across the epochs considered. The high and low states display in general different normalisations but consistent spectral properties. X-ray flux fluctuations are ubiquitous in AGN. In general, the significant flux variations are not associated with a spectral variability: photon index and column densities are not significantly variable in nine out of the ten AGN over long timescales (from 3 to 6.5 years). The photon index variability is found only in one source (which is steeper when brighter) out of seven unabsorbed AGN. These results are consistent with previous deep samples.
We present results from the deep XMM-Newton observations of the two brightest X-ray sources in the Chandra Deep Field South (CDFS), PID 203 (z=0.544) and PID 319 (z=0.742). The long exposure of 2.5 Ms over a 10 year period (net 4 yr with a 6 yr gap) makes it possible to obtain high quality X-ray spectra of these two Type I AGN with X-ray luminosity of 10^44 erg/s, typical luminosity for low-redshift PG quasars, track their X-ray variability both in flux and spectral shape. Both sources showed X-ray flux variability of ~10-20 per cent in rms which is similar in the soft (0.5-2 keV) and hard (2-7 keV) bands. PID 203, which has evidence for optical extinction, shows modest amount of absorption (nH~1e21cm^-2) in the X-ray spectrum. Fe K emission is strongly detected in both objects with EW~0.2 keV. The lines in both objects are moderately broad and exhibit marginal evidence for variability in shape and flux, indicating that the bulk of the line emission come from their accretion disks rather than distant tori.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا