ﻻ يوجد ملخص باللغة العربية
An understanding of the underlying mechanism of side--branching is paramount in controlling and/or therapeutically treating mammalian organs, such as lungs, kidneys, and glands. Motivated by an activator-inhibitor-substrate approach that is conjectured to dominate the initiation of side--branching in pulmonary vascular pattern, I demonstrate a distinct transverse front instability in which new fingers grow out of an oscillatory breakup dynamics at the front line, without any typical length scale. These two features are attributed to unstable peak solutions in 1D that subcritically emanate from the Turing bifurcation and that exhibit repulsive interactions. The results are based on a bifurcation analysis and numerical simulations, and provide a potential strategy toward developing a framework of side--branching also of other biological systems, such as plant roots and cellular protrusions.
The Turing patterning mechanism is believed to underly the formation of repetitive structures in development, such as zebrafish stripes and mammalian digits, but it has proved difficult to isolate the specific biochemical species responsible for patt
Excitable pulses are among the most widespread dynamical patterns that occur in many different systems, ranging from biological cells to chemical reactions and ecological populations. Traditionally, the mutual annihilation of two colliding pulses is
An activator-inhibitor-substrate model of side-branching used in the context of pulmonary vascular and lung development is considered on the supposition that spatially localized concentrations of the activator trigger local side-branching. The model
We studied dendritic side-branching mechanism in the experiment of anisotropic viscous fingering. We measured the time dependence of growth speed of side-branch and the envelop of side-branches. We found that the speed of side-branch gets to be faste
Reaction-diffusion processes across layered media arise in several scientific domains such as pattern-forming E. coli on agar substrates, epidermal-mesenchymal coupling in development, and symmetry-breaking in cell polarisation. We develop a modellin