ﻻ يوجد ملخص باللغة العربية
In this paper, the main task we aim to tackle is the multi-instance semi-supervised video object segmentation across a sequence of frames where only the first-frame box-level ground-truth is provided. Detection-based algorithms are widely adopted to handle this task, and the challenges lie in the selection of the matching method to predict the result as well as to decide whether to update the target template using the newly predicted result. The existing methods, however, make these selections in a rough and inflexible way, compromising their performance. To overcome this limitation, we propose a novel approach which utilizes reinforcement learning to make these two decisions at the same time. Specifically, the reinforcement learning agent learns to decide whether to update the target template according to the quality of the predicted result. The choice of the matching method will be determined at the same time, based on the action history of the reinforcement learning agent. Experiments show that our method is almost 10 times faster than the previous state-of-the-art method with even higher accuracy (region similarity of 69.1% on DAVIS 2017 dataset).
Significant progress has been made in Video Object Segmentation (VOS), the video object tracking task in its finest level. While the VOS task can be naturally decoupled into image semantic segmentation and video object tracking, significantly much mo
Video object segmentation, aiming to segment the foreground objects given the annotation of the first frame, has been attracting increasing attentions. Many state-of-the-art approaches have achieved great performance by relying on online model updati
Online video object segmentation is a challenging task as it entails to process the image sequence timely and accurately. To segment a target object through the video, numerous CNN-based methods have been developed by heavily finetuning on the object
In this paper, we propose the differentiable mask-matching network (DMM-Net) for solving the video object segmentation problem where the initial object masks are provided. Relying on the Mask R-CNN backbone, we extract mask proposals per frame and fo
Semi-supervised video object segmentation (semi-VOS) is widely used in many applications. This task is tracking class-agnostic objects from a given target mask. For doing this, various approaches have been developed based on online-learning, memory n