ﻻ يوجد ملخص باللغة العربية
The scarcity of spectrum resources in current wireless communication systems has sparked enormous research interest in the terahertz (THz) frequency band. This band is characterized by fundamentally different propagation properties resulting in different interference structures from what we have observed so far at lower frequencies. In this paper, we derive a new expression for the coverage probability of downlink transmission in THz communication systems within a three-dimensional (3D) environment. First, we establish a 3D propagation model which considers the molecular absorption loss, 3D directional antennas at both access points (APs) and user equipments (UEs), interference from nearby APs, and dynamic blockages caused by moving humans. Then, we develop a novel easy-to-use analytical framework based on the dominant interferer analysis to evaluate the coverage probability, the novelty of which lies in the incorporation of the instantaneous interference and the vertical height of THz devices. Our numerical results demonstrate the accuracy of our analysis and reveal that the coverage probability significantly decreases when the transmission distance increases. We also show the increasing blocker density and increasing AP density impose different impacts on the coverage performance when the UE-AP link of interest is in line-of-sight. We further show that the coverage performance improvement brought by increasing the antenna directivity at APs is higher than that brought by increasing the antenna directivity at UEs.
We conduct novel coverage probability analysis of downlink transmission in a three-dimensional (3D) terahertz (THz) communication (THzCom) system. In this system, we address the unique propagation properties in THz band, e.g., absorption loss, super-
We derive new expressions for the connection probability and the average ergodic capacity to evaluate the performance achieved by multi-connectivity (MC) in an indoor ultra-wideband terahertz (THz) communication system. In this system, the user is af
Mobility and blockage are two critical challenges in wireless transmission over millimeter-wave (mmWave) and Terahertz (THz) bands. In this paper, we investigate network massive multiple-input multiple-output (MIMO) transmission for mmWave/THz downli
The intelligent reflective surface (IRS) technology has received many interests in recent years, thanks to its potential uses in future wireless communications, in which one of the promising use cases is to widen coverage, especially in the line-of-s
In this paper, we design and experiment a far-field wireless power transfer (WPT) architecture based on distributed antennas, so-called WPT DAS, that dynamically selects transmit antenna and frequency to increase the output dc power. Uniquely, spatia