ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural and thermal transport properties of ferroelectric domain walls in GeTe from first principles

70   0   0.0 ( 0 )
 نشر من قبل Djordje Dangic
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ferroelectric domain walls are boundaries between regions with different polarization orientations in a ferroelectric material. Using first principles calculations, we characterize all different types of domain walls forming on ($11bar{1}$), ($111$) and ($1bar{1}0$) crystallographic planes in thermoelectric GeTe. We find large structural distortions in the vicinity of most of these domain walls, which are driven by polarization variations. We show that such strong strain-order parameter coupling will considerably reduce the lattice thermal conductivity of GeTe samples containing domain walls with respect to single crystal. Our results thus suggest that domain engineering is a promising path for enhancing the thermoelectric figure of merit of GeTe.



قيم البحث

اقرأ أيضاً

Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010] and [001] directions. The three methods agree well with each other, the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters.
Ferroelectric domain walls exhibit a range of interesting electrical properties and are now widely recognized as functional two-dimensional systems for the development of next-generation nanoelectronics. A major achievement in the field was the devel opment of a fundamental framework that explains the emergence of enhanced electronic direct-current (DC) conduction at the domain walls. In this Review, we discuss the much less explored behavior of ferroelectric domain walls under applied alternating-current (AC) voltages. We provide an overview of the recent advances in the nanoscale characterization that allow for resolving the dynamic responses of individual domain walls to AC fields. In addition, different examples are presented, showing the unusual AC electronic properties that arise at neutral and charged domain walls in the kilo- to gigahertz regime. We conclude with a discussion about the future direction of the field and novel application opportunities, expanding domain-wall based nanoelectronics into the realm of AC technologies.
179 - Rui Mao , Byoung Don Kong , 2014
Thermal transport properties at the metal/MoS2 interfaces are analyzed by using an atomistic phonon transport model based on the Landauer formalism and first-principles calculations. The considered structures include chemisorbed Sc(0001)/MoS2 and Ru( 0001)/MoS2, physisorbed Au(111)/MoS2, as well as Pd(111)/MoS2 with intermediate characteristics. Calculated results illustrate a distinctive dependence of thermal transfer on the details of interfacial microstructures. More specifically, the chemisorbed case with a stronger bonding exhibits a generally smaller interfacial thermal resistance than the physisorbed. Comparison between metal/MoS2 and metal/graphene systems suggests that metal/MoS2 is significantly more resistive. Further examination of lattice dynamics identifies the presence of multiple distinct atomic planes and bonding patterns at the interface as the key origin of the observed large thermal resistance.
First-principles calculations through a FLAPW-GGA method for six possible polymorphs of ruthenium mononitride RuN with various atomic coordination numbers CNs: cubic zinc blende (ZB) and cooperite PtS-like structures with CNs = 4; cubic rock-salt (RS ), hexagonal WC-like and NiAs-like structures with CNs = 6 and cubic CsCl-like structure with CN = 8 indicate that the most stable is ZB structure, which is much more preferable for RuN than the recently reported RS structure for synthesized RuN samples. The elastic and electronic properties of ZB-RuN were investigated and discussed in comparison with those for RS-RuN polymorph.
Density Functional Theory calculations have been performed to obtain lattice parameters, elastic constants, and electronic properties of ideal pyrochlores with the composition A$_2$B$_2$O$_7$ (where A=La,Y and B=Ti,Sn,Hf, Zr). Some thermal properties are also inferred from the elastic properties. A decrease of the sound velocity (and thus, of the Debye temperature) with the atomic mass of the B ion is observed. Static and dynamical atomic charges are obtained to quantify the degree of covalency/ionicity. A large anomalous contribution to the dynamical charge is observed for Hf, Zr, and specially for Ti. It is attributed to the hybridization between occupied $2p$ states of oxygen and unoccupied d states of the B cation. The analysis based on Mulliken population and deformation charge integrated in the Voronoi polyhedra indicates that the ionicity of these pyrochlores increases in the order Sn--Ti--Hf--Zr. The charge deformation contour plots support this assignment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا