ﻻ يوجد ملخص باللغة العربية
In this paper, an efficient massive multiple-input multiple-output (MIMO) detector is proposed by employing a deep neural network (DNN). Specifically, we first unfold an existing iterative detection algorithm into the DNN structure, such that the detection task can be implemented by deep learning (DL) approach. We then introduce two auxiliary parameters at each layer to better cancel multiuser interference (MUI). The first parameter is to generate the residual error vector while the second one is to adjust the relationship among previous layers. We further design the training procedure to optimize the auxiliary parameters with pre-processed inputs. The so derived MIMO detector falls into the category of model-driven DL. The simulation results show that the proposed MIMO detector can achieve preferable detection performance compared to the existing detectors for massive MIMO systems.
Forward channel state information (CSI) often plays a vital role in scheduling and capacity-approaching transmission optimization for massive multiple-input multiple-output (MIMO) communication systems. In frequency division duplex (FDD) massive MIMO
In this paper, we investigate the model-driven deep learning (DL) for MIMO detection. In particular, the MIMO detector is specially designed by unfolding an iterative algorithm and adding some trainable parameters. Since the number of trainable param
In this paper, we propose a model-driven deep learning network for multiple-input multiple-output (MIMO) detection. The structure of the network is specially designed by unfolding the iterative algorithm. Some trainable parameters are optimized throu
Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (D
Massive multiple-input multiple-output can obtain more performance gain by exploiting the downlink channel state information (CSI) at the base station (BS). Therefore, studying CSI feedback with limited communication resources in frequency-division d