ترغب بنشر مسار تعليمي؟ اضغط هنا

A Habitable-Zone Earth-Sized Planet Rescued from False Positive Status

434   0   0.0 ( 0 )
 نشر من قبل Andrew Vanderburg
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of an Earth-sized planet in the habitable zone of a low-mass star called Kepler-1649. The planet, Kepler-1649 c, is 1.06$^{+0.15}_{-0.10}$ times the size of Earth and transits its 0.1977 +/- 0.0051 Msun mid M-dwarf host star every 19.5 days. It receives 74 +/- 3 % the incident flux of Earth, giving it an equilibrium temperature of 234 +/- 20K and placing it firmly inside the circumstellar habitable zone. Kepler-1649 also hosts a previously-known inner planet that orbits every 8.7 days and is roughly equivalent to Venus in size and incident flux. Kepler-1649 c was originally classified as a false positive by the Kepler pipeline, but was rescued as part of a systematic visual inspection of all automatically dispositioned Kepler false positives. This discovery highlights the value of human inspection of planet candidates even as automated techniques improve, and hints that terrestrial planets around mid to late M-dwarfs may be more common than those around more massive stars.



قيم البحث

اقرأ أيضاً

We present $Spitzer$ 4.5$mu$m observations of the transit of TOI-700 d, a habitable zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325-6534456). TOI-700 d has a radius of $1.144^{+0.062}_{ -0.061}R_oplus$ and orbits within its host stars conservative habitable zone with a period of 37.42 days ($T_mathrm{eq} sim 269$K). TOI-700 also hosts two small inner planets (R$_b$=$1.037^{+0.065}_{-0.064}R_oplus$ & R$_c$=$2.65^{+0.16}_{-0.15}R_oplus$) with periods of 9.98 and 16.05 days, respectively. Our $Spitzer$ observations confirm the TESS detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the $Spitzer$ light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity instruments (expected RV semi-amplitude of $sim$70 cm/s).
We validate the discovery of a 2 Earth radii sub-Neptune-size planet around the nearby high proper motion M2.5-dwarf G 9-40 (EPIC 212048748), using high-precision near-infrared (NIR) radial velocity (RV) observations with the Habitable-zone Planet Fi nder (HPF), precision diffuser-assisted ground-based photometry with a custom narrow-band photometric filter, and adaptive optics imaging. At a distance of $d=27.9mathrm{pc}$, G 9-40b is the second closest transiting planet discovered by K2 to date. The planets large transit depth ($sim$3500ppm), combined with the proximity and brightness of the host star at NIR wavelengths (J=10, K=9.2) makes G 9-40b one of the most favorable sub-Neptune-sized planet orbiting an M-dwarf for transmission spectroscopy with JWST, ARIEL, and the upcoming Extremely Large Telescopes. The star is relatively inactive with a rotation period of $sim$29 days determined from the K2 photometry. To estimate spectroscopic stellar parameters, we describe our implementation of an empirical spectral matching algorithm using the high-resolution NIR HPF spectra. Using this algorithm, we obtain an effective temperature of $T_{mathrm{eff}}=3404pm73$K, and metallicity of $mathrm{[Fe/H]}=-0.08pm0.13$. Our RVs, when coupled with the orbital parameters derived from the transit photometry, exclude planet masses above $11.7 M_oplus$ with 99.7% confidence assuming a circular orbit. From its radius, we predict a mass of $M=5.0^{+3.8}_{-1.9} M_oplus$ and an RV semi-amplitude of $K=4.1^{+3.1}_{-1.6}mathrm{m:s^{-1}}$, making its mass measurable with current RV facilities. We urge further RV follow-up observations to precisely measure its mass, to enable precise transmission spectroscopic measurements in the future.
We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R_PL = 10.12 pm 0.56 R_E) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least three transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between Neptune to Jupiter. These detections nearly double the number of gas giant planet candidates orbiting at habitable zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd-sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.
We present the discovery and validation of a three-planet system orbiting the nearby (31.1 pc) M2 dwarf star TOI-700 (TIC 150428135). TOI-700 lies in the TESS continuous viewing zone in the Southern Ecliptic Hemisphere; observations spanning 11 secto rs reveal three planets with radii ranging from 1 R$_oplus$ to 2.6 R$_oplus$ and orbital periods ranging from 9.98 to 37.43 days. Ground-based follow-up combined with diagnostic vetting and validation tests enable us to rule out common astrophysical false-positive scenarios and validate the system of planets. The outermost planet, TOI-700 d, has a radius of $1.19pm0.11$ R$_oplus$ and resides in the conservative habitable zone of its host star, where it receives a flux from its star that is approximately 86% of the Earths insolation. In contrast to some other low-mass stars that host Earth-sized planets in their habitable zones, TOI-700 exhibits low levels of stellar activity, presenting a valuable opportunity to study potentially-rocky planets over a wide range of conditions affecting atmospheric escape. While atmospheric characterization of TOI-700 d with the James Webb Space Telescope (JWST) will be challenging, the larger sub-Neptune, TOI-700 c (R = 2.63 R$_oplus$), will be an excellent target for JWST and beyond. TESS is scheduled to return to the Southern Hemisphere and observe TOI-700 for an additional 11 sectors in its extended mission, which should provide further constraints on the known planet parameters and searches for additional planets and transit timing variations in the system.
We present the discovery of a super-earth-sized planet in or near the habitable zone of a sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the three-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.1%. The inner planet, Kepler-69b, has a radius of 2.24+/-0.4 Rearth and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-size object with a radius of 1.7+/-0.3 Rearth and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 +/- 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا