ﻻ يوجد ملخص باللغة العربية
We survey discrete and continuous model-theoretic notions which have important connections to general topology. We present a self-contained exposition of several interactions between continuous logic and $C_p$-theory which have applications to a classification problem involving Banach spaces not including $c_0$ or $l^p$, following recent results obtained by P. Casazza and J. Iovino for compact continuous logics. Using $C_p$-theoretic results involving Grothendieck spaces and double limit conditions, we extend their results to a broader family of logics, namely those with a first countable weakly Grothendieck space of types. We pose $C_p$-theoretic problems which have model-theoretic implications.
I summarize Density Functional Theory (DFT) in a language familiar to quantum field theorists, and introduce several apparently novel ideas for constructing {it systematic} approximations for the density functional. I also note that, at least within
This is a largely expository paper about how groups arise or are of interest in model theory. Included are the following topics: classifying groups definable in specific structures or theories and the relation to algebraic groups, groups definable in
Lectures given at the Theoretical Advanced Study Institute (TASI 2020), 1-26 June 2020. The topics covered include quantum circuits, entanglement, quantum teleportation, Bell inequalities, quantum entropy and decoherence, classical versus quantum mea
We prove that uniform metastability is equivalent to all closed subspaces being pseudocompact and use this to provide a topological proof of the metatheorem introduced by Caicedo, Duenez and Iovino on uniform metastability and countable compactness for logics.
The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI], [HT], and especially [HT20]. We here answer a question of Arhangelskiu{i} by proving it undecidable whether countably tight spaces with