ﻻ يوجد ملخص باللغة العربية
Structure-forming systems are ubiquitous in nature, ranging from atoms building molecules to self-assembly of colloidal amphibolic particles. The understanding of the underlying thermodynamics of such systems remains an important problem. Here we derive the entropy for structure-forming systems that differs from Boltzmann-Gibbs entropy by a term that explicitly captures clustered states. For large systems and low concentrations, the approach is equivalent to the grand-canonical ensemble; for small systems, we find significant deviations. We derive the detailed fluctuation theorem and Crooks work fluctuation theorem for structure-forming systems. The connection to the theory of particle self-assembly is discussed. We apply the results to several physical systems. We present the phase diagram for patchy particles described by the Kern-Frenkel potential. We show that the Curie-Weiss model with molecule structures exhibits a first-order phase transition.
We study the thermodynamics and critical behavior of su($m|n$) supersymmetric spin chains of Haldane-Shastry type with a chemical potential term. We obtain a closed-form expression for the partition function and deduce a description of the spectrum i
Understanding the thermodynamics of the duplication process is a fundamental step towards a comprehensive physical theory of biological systems. However, the immense complexity of real cells obscures the fundamental tensions between energy gradients
When noninteracting fermions are confined in a $D$-dimensional region of volume $mathrm{O}(L^D)$ and subjected to a continuous (or piecewise continuous) potential $V$ which decays sufficiently fast with distance, in the thermodynamic limit, the groun
We report a rigorous theory to show the origin of the unexpected periodic behavior seen in the consecutive differences between prime numbers. We also check numerically our findings to ensure that they hold for finite sequences of primes, that would e
The nature of the behaviour of an isolated many-body quantum system periodically driven in time has been an open question since the beginning of quantum mechanics. After an initial transient, such a system is known to synchronize with the driving; in