ترغب بنشر مسار تعليمي؟ اضغط هنا

Scission configuration of $^{239}$U from yields and kinetic information of fission fragments

97   0   0.0 ( 0 )
 نشر من قبل Antoine Lemasson
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The simultaneous measurement of the isotopic fission-fragment yields and fission-fragment velocities of $^{239}$U has been performed for the first time. The $^{239}$U fissioning system was produced in one-neutron transfer reactions between a $^{238}$U beam at 5.88 MeV/nucleon and a $^{9}$Be target. The combination of inverse kinematics at low energy and the use of the VAMOS++ spectrometer at the GANIL facility allows the isotopic identification of the full fission-fragment distribution and their velocity in the reference frame of the fissioning system. The proton and neutron content of the fragments at scission, their total kinetic and total excitation energy, as well as the neutron multiplicity were determined. Information from the scission point configuration is obtained from these observables and the correlation between them. The role of the octupole-deformed proton and neutron shells in the fission-fragment production is discussed.



قيم البحث

اقرأ أيضاً

A direct and complete measurement of isotopic fission-fragment yields of $^{239}$U has been performed for the first time. The $^{239}$U fissioning system was produced with an average excitation energy of 8.3 MeV in one-neutron transfer reactions betw een a $^{238}$U beam and a $^{9}$Be target at Coulomb barrier energies. The fission fragments were detected and isotopically identified using the VAMOS++ spectrometer at the GANIL facility. This measurement allows to directly evaluate the fission models at excitation energies of fast neutrons, relevant for next-generation nuclear reactors. The present data, in agreement with model calculations, do not support the recently reported anomaly in the fission-fragment yields of $^{239}$U and confirm the persistence of spherical shell effects in the Sn region at excitation energies exceeding the fission barrier by few MeV.
Focused on the generation and evolution of vast complementary pairs of the primary fission fragments at scission moment, Dinuclear and Statistical Model (DSM) is proposed. (1) It is assumed that the fissile nucleus elongates along a symmetric coaxis until it breaks into two primary fission fragments. (2) Every complementary pair of the primary fission fragments is approximatively described as two ellipsoids with large deformation at scission moment. (3) The kinetic energy in every complementary pair of the primary fragments is mainly provided by Coulomb repulsion, which is explicitly expressed through strict six-dimensional integrals. (4) Only three phenomenological coefficients are obtained to globally describe the quadrupole deformation parameters of arbitrary primary fragments both for $^{235}$U($n_{th}, f$) and $^{239}$Pu($n_{th}, f$) reactions, on the basis of the common characteristics of the measured data, such as mass and charge distributions, kinetic energy distributions. In the framework of DSM, the explicit average total kinetic energy distribution $overline{TKE}(A)$ and the average kinetic energy distribution $overline{KE}(A)$ are consistently represented. The theoretical results in this paper agree well with the experimental data. Furthermore, this model is expected as the reliable approach to generally evaluate the corresponding observebles for thermal neutron-induced fission of actinides.
The isotopic-yield distributions and kinematic properties of fragments produced in transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV of excitation energy respectively, were measured in inverse kinematics wit h the spectrometer VAMOS. The kinematic properties of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.
177 - R. Yanez , W. Loveland , J. King 2015
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the w hite spectrum neutron beam at the LANSCE facility. (To calibrate the apparatus, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the OSU TRIGA reactor). The TKE decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. The standard deviation of the TKE distribution is constant from $E_{n}$=20-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II modes for a given mass is independent of neutron energy.
A detailed investigation on the relative isotopic distributions has been carried out for the first time in case of even-even correlated fission fragments for the $^{235}$U($n_{th}$,$f$) fission reaction. High-statistics data were obtained in a prompt $gamma$ ray spectroscopy measurement during the EXILL campaign at ILL, Grenoble, France. The extensive off-line analysis of the coincidence data have been carried out using four different coincidence methods. Combining the results from 2-dimensional $gamma-gamma$ and 3-dimensional $gamma-gamma-gamma$ coincidence analysis, a comprehensive picture of the relative isotopic yield distributions of the even-even neutron-rich fission fragments has emerged. The experimentally observed results have been substantiated by the theoretical calculations based on a novel approach of isospin conservation, and a reasonable agreement has been obtained. The calculations following the semi-empirical GEF model have also been carried out. The results from the GEF model calculations are found to be in fair agreement with the experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا