ترغب بنشر مسار تعليمي؟ اضغط هنا

Silicon emissivity as a function of temperature

53   0   0.0 ( 0 )
 نشر من قبل Marcio Constancio Junior
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present the temperature-dependent emissivity of a silicon sample, estimated from its cool-down curve in a constant low temperature environment ($approx$ 82K). The emissivity value follow a linear dependency in the 120-260 K temperature range. This result is of great interest to the LIGO Voyager gravitational wave interferometer project since it would mean that no extra high thermal emissivity coating on the test masses would be required in order to cool them down to 123 K. The results presented here indicate that bulk silicon itself can have sufficient thermal emissivity in order to cool the 200 kg LIGO Voyager test masses only by radiation in a reasonable short amount of time (less than a week). However, it is still not clear if the natural emissivity of silicon will be sufficient to maintain the LIGO Voyager test masses at the desired temperature (123 K) while removing power absorbed by the test masses. With the present results, a black coating on the barrel surface of the test masses would be necessary if power in excess of 6 W is delivered. However, the agreement we found between the hemispherical emissivity obtained by a theory of semi-transparent Silicon and the obtained experimental results makes us believe that the LIGO Voyager test masses, because of their dimensions, will have effective emissivities around 0.7, which would be enough to remove about 8.6 W (7.5 W) for a shield at 60 K (80K). This hypothesis may be confirmed in the near future with new measurements.



قيم البحث

اقرأ أيضاً

The temperature of a nonneutral plasma confined in a Penning-Malmberg trap can be determined by slowly lowering one side of the traps electrostatic axial confinement barrier; the temperature is inferred from the rate at which particles escape the tra p as a function of the barrier height. Often, the escaping particles are directed toward a microchannel plate (MCP), and the resulting amplified charge is collected on a phosphor screen. The screen is used for imaging the plasma, but can also be used as a Faraday cup FC for a temperature measurement. The sensitivity limit is then set by microphonic noise enhanced by the screens high voltage bias. Alternately, a silicon photomultiplier (SiPM) can be employed to measure the charge via the light emitted from the phosphor screen. This decouples the signal from the microphonic noise and allows the temperature of colder and smaller plasmas to be measured than could be measured previously; this paper focusses on the advantages of a SiPM over a FC.
The response of silicon drift detectors (SDDs), which were mounted together with their preamplifiers inside a vacuum chamber, was studied in a temperature range from 100 K to 200 K. In particular, the energy resolution could be stabilized to about 15 0 eV at 6 keV between 130 K and 200 K, while the time resolution shows a temperature dependence of T^3 in this temperature range. To keep a variation of the X-ray peak positions within 1 eV, it is necessary to operate the preamplifier within a stability of 1 K around 280 K. A detailed investigation of this temperature influences on SDDs and preamplifiers is presented.
A Silicon Photomultiplier, SiPM, is a metasystem of Avalanche Photodiodes, APDs, which embedded in a specific purpose electronic, becomes a metadevice with unique and useful advanced functionalities to capture, transmit and analyze information with i ncreased efficiency and security. The SiPM is a very small state of the art photo-detector with very high efficiency and sensitivity, with good response to controlled light pulses in the presence of background light without saturation. New results profit of such metadevice to propose a new receiver-emitter system useful for Visible Light Communication, VLC.
Silicon photomultipliers (SiPMs) have a low radioactivity, compact geometry, low operation voltage, and reasonable photo-detection efficiency for vacuum ultraviolet light (VUV). Therefore it has the potential to replace photomultiplier tubes (PMTs) f or future dark matter experiments with liquid xenon (LXe). However, SiPMs have nearly two orders of magnitude higher dark count rate (DCR) compared to that of PMTs at the LXe temperature ($sim$ 165 K). This type of high DCR mainly originates from the carriers that are generated by band-to-band tunneling effect. To suppress the tunneling effect, we have developed a new SiPM with lowered electric field strength in cooperation with Hamamatsu Photonics K. K. and characterized its performance in a temperature range of 153 K to 298 K. We demonstrated that the newly developed SiPMs had 6--54 times lower DCR at low temperatures compared to that of the conventional SiPMs.
The thermal transport in partially trenched silicon nitride membranes has been studied in the temperature range from 0.3 to 0.6 K, with the transition edge sensor (TES), the sole source of membrane heating. The test configuration consisted of Mo/Au T ESs lithographically defined on silicon nitride membranes 1 micron thick and 6 mm^2 in size. Trenches with variable depth were incorporated between the TES and the silicon frame in order to manage the thermal transport. It was shown that sharp features in the membrane surface, such as trenches, significantly impede the modes of phonon transport. A nonlinear dependence of thermal resistance on trench depth was observed. Partial perforation of silicon nitride membranes to control thermal transport could be useful in fabricating mechanically robust detector devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا