ترغب بنشر مسار تعليمي؟ اضغط هنا

A cavity optomechanical locking scheme based on the optical spring effect

49   0   0.0 ( 0 )
 نشر من قبل Philipp Rohse
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel locking scheme for active length-stabilization and frequency detuning of a cavity optomechanical device based on the optical spring effect. The scheme can be used as an alternative to the Pound-Drever-Hall locking technique but in contrast doesnt require signal processing on time-scales of the cavity decay rate. It is therefore particularly suited for stabilizing micro cavities, where this time-scale can be extremely fast. The error signal is generated through the optical spring effect, i.e. the detuning-dependent frequency-shift of a nanomechanical oscillator that is dispersively coupled to the intra-cavity light field. We explain the functional principle of the lock and characterize its performance in terms of bandwidth and gain profile. The optical spring locking scheme can be implemented without larger efforts in a wide variety of optomechanical systems in the unresolved sideband regime.

قيم البحث

اقرأ أيضاً

Dynamic dipolar toroidal response is demonstrated by an optical plasmonic metamaterial composed of double disks. This response with a hotspot of localized E-field concentration is a well-behaved toroidal cavity mode that exhibits a large Purcell fact or due to its deep-subwavelength mode volume. All-optical Hall effect (photovoltaic) due to this optical toroidal moment is demonstrated numerically, in mimicking the magnetoelectric effect in multiferroic systems. The result shows a promising avenue to explore various optical phenomena associated with this intriguing dynamic toroidal moment.
Optical frequency stabilization is a critical component for precision scientific systems including quantum sensing, precision metrology, and atomic timekeeping. Ultra-high quality factor photonic integrated optical resonators are a prime candidate fo r reducing their size, weight and cost as well as moving these systems on chip. However, integrated resonators suffer from temperature-dependent resonance drift due to the large thermal response as well as sensitivity to external environmental perturbations. Suppression of the cavity resonance drift can be achieved using precision interrogation of the cavity temperature through the dual-mode optical thermometry. This approach enables measurement of the cavity temperature change by detecting the resonance difference shift between two polarization or optical frequency modes. Yet this approach has to date only been demonstrated in bulk-optic whispering gallery mode and fiber resonators. In this paper, we implement dual-mode optical thermometry using dual polarization modes in a silicon nitride waveguide resonator for the first time, to the best of our knowledge. The temperature responsivity and sensitivity of the dual-mode TE/TM resonance difference is 180.7$pm$2.5 MHz/K and 82.56 $mu$K, respectively, in a silicon nitride resonator with a 179.9E6 intrinsic TM mode Q factor and a 26.6E6 intrinsic TE mode Q factor. Frequency stabilization is demonstrated by locking a laser to the TM mode cavity resonance and applying the dual-mode resonance difference to a feedforward laser frequency drift correction circuit with a drift rate improvement to 0.31 kHz/s over the uncompensated 10.03 kHz/s drift rate. Allan deviation measurements with dual-mode feedforward-correction engaged shows that a fractional frequency instability of 9.6E-11 over 77 s can be achieved.
While it has been shown that backscattering induced phase noise can be suppressed by adopting acoustic-optic-modulators (AOMs) at the local and remote sites to break the frequency symmetry in both directions. However, this issue can not be avoided fo r conventional fiber-optic multiple-access coherent optical phase dissemination in which the interference of the signal light with the Rayleigh backscattered light will probably destroy the coherence of the stabilized optical signal. We suppress the backscattering effect by locally breaking the frequency symmetry at the extraction point by inserting an additional AOM. Here, we theoretically analyze and experimentally demonstrate an add-drop one more AOM approach for suppressing the Rayleigh backscattering within the fiber link. Near-complete suppression of backscattering noise is experimentally confirmed through the measurement the elimination of a common interference term of the signal light and the Rayleigh backscattered light. The results demonstrate that the Rayleigh backscattering light has a limited effect compared to the residual delay-limited fiber phase noise on the systems performance. Our results also provide new evidence that it is possible to largely suppress Rayleigh and other backscattering noise within a long optical fiber link, where the accumulated phase noise could be large, by using frequency symmetry breaking at each access node to achieve robust multiple-access coherent optical phase propagation in spite of scatters or defects.
We report on an ultralow noise optical frequency transfer from a remotely located Sr optical lattice clock laser to a Ti:Sapphire optical frequency comb through telecom-wavelength optical fiber networks. The inherent narrow linewidth of the Ti:Sapphi re optical frequency comb eliminates the need for a local reference high-finesse cavity. The relative fractional frequency instability of the optical frequency comb with respect to the remote optical reference was $6.7(1) times 10^{-18}$ at 1 s and $1.05(3) times 10^{-19}$ at 1,000 s including a 2.9 km-long fiber network. This ensured the optical frequency comb had the same precision as the optical standard. Our result paves the way for ultrahigh-precision spectroscopy and conversion of the highly precise optical frequency to radio frequencies in a simpler setup.
Photonic integrated resonators stand out as reliable frequency converters due to their compactness and stability, with second-harmonic generation (SHG) efficiencies of up to 17000%/W reported recently in aluminum nitride microrings. In this work, a s ufficiently strong second-harmonic (SH) signal up to microwatts was generated by a photonic integrated frequency doubler using a milliwatt infrared (IR) laser source. Furthermore, increased SHG bandwidth covering $^{85}$Rb and $^{87}$Rb D$_2$ transition lines as well as saturated absorption spectroscopy (SAS) were demonstrated by tuning the pump power and chip temperature. Here, we present, to the best of our knowledge, the first successful locking of an IR laser to Rb saturated absorption lines via a photonic chip frequency doubler.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا