ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean curvature interface limit from Glauber+Zero-range interacting particles

59   0   0.0 ( 0 )
 نشر من قبل Sunder Sethuraman
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive a continuum mean-curvature flow as a certain hydrodynamic scaling limit of a class of Glauber+Zero-range particle systems. The Zero-range part moves particles while preserving particle numbers, and the Glauber part governs the creation and annihilation of particles and is set to favor two levels of particle density. When the two parts are simultaneously seen in certain different time-scales, the Zero-range part being diffusively scaled while the Glauber part is speeded up at a lesser rate, a mean-curvature interface flow emerges, with a homogenized `surface tension-mobility parameter reflecting microscopic rates, between the two levels of particle density. We use relative entropy methods, along with a suitable `Boltzmann-Gibbs principle, to show that the random microscopic system may be approximated by a `discretized Allen-Cahn PDE with nonlinear diffusion. In turn, we show the behavior of this `discretized PDE is close to that of a continuum Allen-Cahn equation, whose generation and propagation interface properties we also derive.



قيم البحث

اقرأ أيضاً

In this report we discuss appropriate strategies for the tracking of charged particles in the limit of zero curvature. The suggested approach avoids special treatments and precision issues that frequently arise in that limit. We provide explicit expr essions for transport, refitting and vertexing in regions where magnetic field inhomogeneities or detector interaction effects can be approximately ignored.
There are a number of situations in which rescaled interacting particle systems have been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction term. These RDEs have traveling wave solutions. When the speed of the wave is nonzero, block constructions have been used to prove the existence or nonexistence of nontrivial stationary distributions. Here, we follow the approach in a paper by Etheridge, Freeman, and Pennington to show that in a wide variety of examples when the RDE limit has a bistable reaction term and traveling waves have speed 0, one can run time faster and further rescale space to obtain convergence to motion by mean curvature. This opens up the possibility of proving that the sexual reproduction model with fast stirring has a discontinuous phase transition, and that in Region 2 of the phase diagram for the nonlinear voter model studied by Molofsky et al there were two nontrivial stationary distributions.
106 - Samuel Herrmann 2014
In the nonlinear diffusion framework, stochastic processes of McKean-Vlasov type play an important role. In some cases they correspond to processes attracted by their own probability distribution: the so-called self-stabilizing processes. Such diffus ions can be obtained by taking the hydrodymamic limit in a huge system of linear diffusions in interaction. In both cases, for the linear and the nonlinear processes, small-noise asymptotics have been emphasized by specific large deviation phenomenons. The natural question, therefore, is: is it possible to interchange the mean-field limit with the small-noise limit? The aim here is to consider this question by proving that the rate function of the first particle in a mean-field system converges to the rate function of the hydrodynamic limit as the number of particles becomes large.
144 - Ao Sun , Jinxin Xue 2021
This is a contribution to the program of dynamical approach to mean curvature flow initiated by Colding and Minicozzi. In this paper, we prove two main theorems. The first one is local in nature and the second one is global. In this first result, we pursue the stream of ideas of cite{CM3} and get a slight refinement of their results. We apply the invariant manifold theory from hyperbolic dynamics to study the dynamics close to a closed shrinker that is not a sphere. In the second theorem, we show that if a hypersurface under the rescaled mean curvature flow converges to a closed shrinker that is not a sphere, then a generic perturbation on initial data would make the flow leave a small neighborhood of the shrinker and never come back.
Controlling large particle systems in collective dynamics by a few agents is a subject of high practical importance, e.g., in evacuation dynamics. In this paper we study an instantaneous control approach to steer an interacting particle system into a certain spatial region by repulsive forces from a few external agents, which might be interpreted as shepherd dogs leading sheep to their home. We introduce an appropriate mathematical model and the corresponding optimization problem. In particular, we are interested in the interaction of numerous particles, which can be approximated by a mean-field equation. Due to the high-dimensional phase space this will require a tailored optimization strategy. The arising control problems are solved using adjoint information to compute the descent directions. Numerical results on the microscopic and the macroscopic level indicate the convergence of optimal controls and optimal states in the mean-field limit,i.e., for an increasing number of particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا