ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium attractor in high-temperature QCD plasmas

112   0   0.0 ( 0 )
 نشر من قبل Michael Strickland
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish the existence of a far-from-equilibrium attractor in weakly-coupled gauge theory undergoing one-dimensional Bjorken expansion. We demonstrate that the resulting far-from-equilibrium evolution is insensitive to certain features of the initial condition, including both the initial momentum-space anisotropy and initial occupancy. We find that this insensitivity extends beyond the energy-momentum tensor to the detailed form of the one-particle distribution function. Based on our results, we assess different procedures for reconstructing the full one-particle distribution function from the energy-momentum tensor along the attractor and discuss implications for the freeze-out procedure used in the phenomenological analysis of ultra-relativistic nuclear collisions.

قيم البحث

اقرأ أيضاً

We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 2<->2 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.
We perform numerical simulations of the QCD Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. We provide an estimate of the coupling of jets to a hot plasma which is independent of infrared cutoffs. For weakly-coupled anisotropic plasmas the local rotational symmetry in momentum space is broken. The fields develop unstable modes, forming configurations where B_t>E_t and E_z>B_z. This provides a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth.
We study the dissipative evolution of (0+1)-dimensionally expanding media with Bjorken symmetry using the Boltzmann equation for massive particles in relaxation-time approximation. Breaking conformal symmetry by a mass induces a non-zero bulk viscous pressure in the medium. It is shown that even a small mass (in units of the local temperature) drastically modifies the well-known attractor for the shear Reynolds number previously observed in massless systems. For generic nonzero particle mass, neither the shear nor the bulk viscous pressure relax quickly to a non-equilibrium attractor; they approach the hydrodynamic limit only late, at small values of the inverse Reynolds numbers. Only the longitudinal pressure, which is a combination of thermal, shear and bulk viscous pressures, continues to show early approach to a far-off-equilibrium attractor, driven by the rapid longitudinal expansion at early times. Second-order dissipative hydrodynamics based on a gradient expansion around locally isotropic thermal equilibrium fails to reproduce this attractor.
Recently it has been argued that the ground state of high density QCD is likely be a combination of the CFL-phase along with condensation of the K^0 field. This state spontaneously breaks a global U(1)_Y symmetry, therefore one would expect the forma tion of U(1)_Y global strings. We discuss the core structure of these strings and demonstrate that under some conditions the global U(1)_Y symmetry may not be restored inside the string, in contrast with the standard expectations. Instead, K^+ condensation occurs inside the core of the string if a relevant parameter costheta_K = mkzero^2/mu_eff^2 is larger than some critical value theta_K > theta_crit. If this phenomenon happens, the U(1)_Y strings become superconducting and may considerably influence the magnetic properties of dense quark matter, in particular in neutron stars.
Jets and photons could play an important role in finding the transport coefficients of the quark-gluon plasma. To this end we analyze their interaction with a non-equilibrium quark-gluon plasma. Using new field-theoretical tools we derive two-point c orrelators for the plasma which show how instabilities evolve in time. This allows us, for the first time, to derive finite rates of interaction with the medium. We furthermore show that coherent, long-wavelength instability fields in the Abelian limit do not modify the rate of photon emission or jet-medium interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا