ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Line Segments Matching via Graph Convolution Networks

84   0   0.0 ( 0 )
 نشر من قبل QuanMeng Ma
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Line matching plays an essential role in structure from motion (SFM) and simultaneous localization and mapping (SLAM), especially in low-textured and repetitive scenes. In this paper, we present a new method of using a graph convolution network to match line segments in a pair of images, and we design a graph-based strategy of matching line segments with relaxing to an optimal transport problem. In contrast to hand-crafted line matching algorithms, our approach learns local line segment descriptor and the matching simultaneously through end-to-end training. The results show our method outperforms the state-of-the-art techniques, and especially, the recall is improved from 45.28% to 70.47% under a similar presicion. The code of our work is available at https://github.com/mameng1/GraphLineMatching.



قيم البحث

اقرأ أيضاً

We propose an efficient and robust iterative solution to the multi-object matching problem. We first clarify serious limitations of current methods as well as the inappropriateness of the standard iteratively reweighted least squares procedure. In vi ew of these limitations, we suggest a novel and more reliable iterative reweighting strategy that incorporates information from higher-order neighborhoods by exploiting the graph connection Laplacian. We demonstrate the superior performance of our procedure over state-of-the-art methods using both synthetic and real datasets.
In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.
Graph matching is a challenging problem with very important applications in a wide range of fields, from image and video analysis to biological and biomedical problems. We propose a robust graph matching algorithm inspired in sparsity-related techniq ues. We cast the problem, resembling group or collaborative sparsity formulations, as a non-smooth convex optimization problem that can be efficiently solved using augmented Lagrangian techniques. The method can deal with weighted or unweighted graphs, as well as multimodal data, where different graphs represent different types of data. The proposed approach is also naturally integrated with collaborative graph inference techniques, solving general network inference problems where the observed variables, possibly coming from different modalities, are not in correspondence. The algorithm is tested and compared with state-of-the-art graph matching techniques in both synthetic and real graphs. We also present results on multimodal graphs and applications to collaborative inference of brain connectivity from alignment-free functional magnetic resonance imaging (fMRI) data. The code is publicly available.
We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate few-shot models for classes existing at the tail of the class distribut ion, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.
Reference-based Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image by introducing an additional high-resolution (HR) reference image. Existing Ref-SR methods mostly rely on implicit cor respondence matching to borrow HR textures from reference images to compensate for the information loss in input images. However, performing local transfer is difficult because of two gaps between input and reference images: the transformation gap (e.g. scale and rotation) and the resolution gap (e.g. HR and LR). To tackle these challenges, we propose C2-Matching in this work, which produces explicit robust matching crossing transformation and resolution. 1) For the transformation gap, we propose a contrastive correspondence network, which learns transformation-robust correspondences using augmented views of the input image. 2) For the resolution gap, we adopt a teacher-student correlation distillation, which distills knowledge from the easier HR-HR matching to guide the more ambiguous LR-HR matching. 3) Finally, we design a dynamic aggregation module to address the potential misalignment issue. In addition, to faithfully evaluate the performance of Ref-SR under a realistic setting, we contribute the Webly-Referenced SR (WR-SR) dataset, mimicking the practical usage scenario. Extensive experiments demonstrate that our proposed C2-Matching significantly outperforms state of the arts by over 1dB on the standard CUFED5 benchmark. Notably, it also shows great generalizability on WR-SR dataset as well as robustness across large scale and rotation transformations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا