ﻻ يوجد ملخص باللغة العربية
Bidirectional conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are employed at repeater stations to extend the reach of long-haul fiber optic communication systems and within data centers to exchange high-speed optical signals between computers. Likewise, coherent microwave-to-optical conversion of single photons would enable the exchange of quantum states between remotely connected superconducting quantum processors, a promising quantum computing hardware platform. Despite the prospects of quantum networking, maintaining the fragile quantum state in such a conversion process with superconducting qubits has remained elusive. Here we demonstrate the conversion of a microwave-frequency excitation of a superconducting transmon qubit into an optical photon. We achieve this using an intermediary nanomechanical resonator which converts the electrical excitation of the qubit into a single phonon by means of a piezoelectric interaction, and subsequently converts the phonon to an optical photon via radiation pressure. We demonstrate optical photon generation from the qubit with a signal-to-noise greater than unity by recording quantum Rabi oscillations of the qubit through single-photon detection of the emitted light over an optical fiber. With proposed improvements in the device and external measurement set-up, such quantum transducers may lead to practical devices capable of realizing new hybrid quantum networks, and ultimately, distributed quantum computers.
The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum informat
A localized qubit entangled with a propagating quantum field is well suited to study non-local aspects of quantum mechanics and may also provide a channel to communicate between spatially separated nodes in a quantum network. Here, we report the on d
We demonstrate ultra-sensitive measurement of fluctuations in a surface-acoustic-wave~(SAW) resonator using a hybrid quantum system consisting of the SAW resonator, a microwave (MW) resonator and a superconducting qubit. The nonlinearity of the drive
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluc
The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on the photon-induced-dephasing process of a superconducting qubit for se