ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling thermochemical processes in protoplanetary disks I: numerical methods

62   0   0.0 ( 0 )
 نشر من قبل Tommaso Grassi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dispersal phase of planet-forming disks via winds driven by irradiation from the central star and/or magnetic fields in the disk itself is likely to play an important role in the formation and evolution of planetary systems. Current theoretical models lack predictive power to adequately constrain observations. We present PRIZMO, a code for evolving thermochemistry in protoplanetary disks capable of being coupled with hydrodynamical and multi-frequency radiative transfer codes. We describe the main features of the code, including gas and surface chemistry, photochemistry, microphysics, and the main cooling and heating processes. The results of a suite of benchmarks, which include photon-dominated regions, slabs illuminated by radiation spectra that include X-ray, and well-established cooling functions evaluated at different temperatures show good agreement both in terms of chemical and thermal structures. The development of this code is an important step to perform quantitative spectroscopy of disk winds, and ultimately the calculation of line profiles, which is urgently needed to shed light on the nature of observed disk winds.



قيم البحث

اقرأ أيضاً

67 - Philip J. Armitage 2015
This review introduces physical processes in protoplanetary disks relevant to accretion and the initial stages of planet formation. After a brief overview of the observational context, I introduce the elementary theory of disk structure and evolution , review the gas-phase physics of angular momentum transport through turbulence and disk winds, and discuss possible origins for the episodic accretion observed in Young Stellar Objects. Turning to solids, I review the evolution of single particles under aerodynamic forces, and describe the conditions necessary for the development of collective gas-particle instabilities. Observations show that disks can exhibit pronounced large-scale structure, and I discuss the types of structures that may form from gas and particle interactions at ice lines, vortices and zonal flows, prior to the formation of large planetary bodies. I conclude with disk dispersal.
The Protoplanetary Discussions conference --- held in Edinburgh, UK, from 7th --11th March 2016 --- included several open sessions led by participants. This paper reports on the discussions collectively concerned with the multiphysics modelling of pr otoplanetary discs, including the self-consistent calculation of gas and dust dynamics, radiative transfer and chemistry. After a short introduction to each of these disciplines in isolation, we identify a series of burning questions and grand challenges associated with their continuing development and integration. We then discuss potential pathways towards solving these challenges, grouped by strategical, technical and collaborative developments. This paper is not intended to be a review, but rather to motivate and direct future research and collaboration across typically distinct fields based on textit{community driven input}, to encourage further progress in our understanding of circumstellar and protoplanetary discs.
104 - Xue-Ning Bai 2014
The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect and ambipolar diffusion. Among these the role of the Hall effect is the least explored a nd most poorly understood. We have included all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies excluding the Hall effect have revealed that the inner disk up to ~10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect introduces modest modifications to the wind solutions, depending on the polarity of the large-scale poloidal magnetic field B_0 threading the disk. When B_0.Omega>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ~50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B_0.Omega<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ~20%) and negligible magnetic braking. Moreover, we find that when B_0.Omega>0, the laminar region extends farther to ~15 AU before the magneto-rotational instability sets in, while for B_0.Omega<0, the laminar region extends only to ~3-5 AU for a typical PPD accretion rates. Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries. Issues with the symmetry of the wind solutions and grain abundance are also discussed.
Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar proce ss may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.
274 - T. Stolker , C. Dominik , M. Min 2016
High-contrast scattered light observations have revealed the surface morphology of several dozens of protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an (optically thick) protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected (r^2-scaled) images and dust phase functions. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in R-band and VLT/NACO in H- and Ks-band. The brightest side of the r^2-scaled R-band polarized intensity image of HD 100546 changes from the far to the near side of the disk when a flaring instead of a geometrically flat disk surface is used for the r^2-scaling. The decrease in polarized surface brightness in the scattering angle range of ~40-70 deg is likely a result of the dust phase function and degree of polarization which peak in different scattering angle regimes. The derived phase functions show part of a forward scattering peak which indicates that large, aggregate dust grains dominate the scattering opacity in the disk surface. Projection effects of a protoplanetary disk surface need to be taken into account to correctly interpret scattered light images. Applying the correct scaling for the correction of stellar irradiation is crucial for the interpretation of the images and the derivation of the dust properties in the disk surface layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا