ﻻ يوجد ملخص باللغة العربية
This contribution investigates the properties of a category of orbits around Enceladus. In a previous investigation, a set of heteroclinic connections were designed between halo orbits around the equilibrium points L1 and L2 of the circular restricted three-body problem with Saturn and Enceladus as primaries. The geometrical characteristics of those trajectories makes them good candidates as science orbits for the extended observation of the surface of Enceladus: they are highly inclined, they approach the moon and they are maneuver-free. However, the low heights above the surface and the strong perturbing effect of Saturn require a study of the influence of the polar flattening of the primaries. Therefore, those solutions are here reconsidered with a dynamical model that includes the effect of the oblateness of Saturn and Enceladus, separately and in combination. The dynamical equivalents of the halo orbits around the equilibrium points L1 and L2 and their stable and unstable hyperbolic invariant manifolds are obtained in the perturbed models, and maneuver-free heteroclinic connections are identified. A comparison with the corresponding solutions of the unperturbed problem shows that qualitative and quantitative features are not significantly altered in the perturbed model. The results confirm the scientific value of the solutions obtained in the classical circular restricted three-body problem and suggests that the simpler model can be used in a preliminary feasibility analysis.
For the Restricted Circular Planar 3 Body Problem, we show that there exists an open set $mathcal U$ in phase space independent of fixed measure, where the set of initial points which lead to collision is $O(mu^frac{1}{20})$ dense as $murightarrow 0$.
The restricted planar four body problem describes the motion of a massless body under the Newtonian gravitational force of other three bodies (the primaries), of which the motion gives us general solutions of the three body problem. A trajectory is
We study the dynamical chaos and integrable motion in the planar circular restricted three-body problem and determine the fractal dimension of the spiral strange repeller set of non-escaping orbits at different values of mass ratio of binary bodies a
We present a numerical study of the application of the Shannon entropy technique to the planar restricted three-body problem in the vicinity of first-order interior mean-motion resonances with the perturber. We estimate the diffusion coefficient for
We study chaos and Levy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $mathcal{S}$ and the LF index $mathcal{L}$, that ar