ترغب بنشر مسار تعليمي؟ اضغط هنا

AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching

147   0   0.0 ( 0 )
 نشر من قبل Xiao Song
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, records on stereo matching benchmarks are constantly broken by end-to-end disparity networks. However, the domain adaptation ability of these deep models is quite poor. Addressing such problem, we present a novel domain-adaptive pipeline called AdaStereo that aims to align multi-level representations for deep stereo matching networks. Compared to previous methods for adaptive stereo matching, our AdaStereo realizes a more standard, complete and effective domain adaptation pipeline. Firstly, we propose a non-adversarial progressive color transfer algorithm for input image-level alignment. Secondly, we design an efficient parameter-free cost normalization layer for internal feature-level alignment. Lastly, a highly related auxiliary task, self-supervised occlusion-aware reconstruction is presented to narrow down the gaps in output space. Our AdaStereo models achieve state-of-the-art cross-domain performance on multiple stereo benchmarks, including KITTI, Middlebury, ETH3D, and DrivingStereo, even outperforming disparity networks finetuned with target-domain ground-truths.

قيم البحث

اقرأ أيضاً

Dense stereo matching with deep neural networks is of great interest to the research community. Existing stereo matching networks typically use slow and computationally expensive 3D convolutions to improve the performance, which is not friendly to re al-world applications such as autonomous driving. In this paper, we propose the Efficient Stereo Network (ESNet), which achieves high performance and efficient inference at the same time. ESNet relies only on 2D convolution and computes multi-scale cost volume efficiently using a warping-based method to improve the performance in regions with fine-details. In addition, we address the matching ambiguity issue in the occluded region by proposing ESNet-M, a variant of ESNet that additionally estimates an occlusion mask without supervision. We further improve the network performance by proposing a new training scheme that includes dataset scheduling and unsupervised pre-training. Compared with other low-cost dense stereo depth estimation methods, our proposed approach achieves state-of-the-art performance on the Scene Flow [1], DrivingStereo [2], and KITTI-2015 dataset [3]. Our code will be made available.
In this paper, we present a decomposition model for stereo matching to solve the problem of excessive growth in computational cost (time and memory cost) as the resolution increases. In order to reduce the huge cost of stereo matching at the original resolution, our model only runs dense matching at a very low resolution and uses sparse matching at different higher resolutions to recover the disparity of lost details scale-by-scale. After the decomposition of stereo matching, our model iteratively fuses the sparse and dense disparity maps from adjacent scales with an occlusion-aware mask. A refinement network is also applied to improving the fusion result. Compared with high-performance methods like PSMNet and GANet, our method achieves $10-100times$ speed increase while obtaining comparable disparity estimation results.
We introduce RAFT-Stereo, a new deep architecture for rectified stereo based on the optical flow network RAFT. We introduce multi-level convolutional GRUs, which more efficiently propagate information across the image. A modified version of RAFT-Ster eo can perform accurate real-time inference. RAFT-stereo ranks first on the Middlebury leaderboard, outperforming the next best method on 1px error by 29% and outperforms all published work on the ETH3D two-view stereo benchmark. Code is available at https://github.com/princeton-vl/RAFT-Stereo.
The deep multi-view stereo (MVS) and stereo matching approaches generally construct 3D cost volumes to regularize and regress the output depth or disparity. These methods are limited when high-resolution outputs are needed since the memory and time c osts grow cubically as the volume resolution increases. In this paper, we propose a both memory and time efficient cost volume formulation that is complementary to existing multi-view stereo and stereo matching approaches based on 3D cost volumes. First, the proposed cost volume is built upon a standard feature pyramid encoding geometry and context at gradually finer scales. Then, we can narrow the depth (or disparity) range of each stage by the depth (or disparity) map from the previous stage. With gradually higher cost volume resolution and adaptive adjustment of depth (or disparity) intervals, the output is recovered in a coarser to fine manner. We apply the cascade cost volume to the representative MVS-Net, and obtain a 23.1% improvement on DTU benchmark (1st place), with 50.6% and 74.2% reduction in GPU memory and run-time. It is also the state-of-the-art learning-based method on Tanks and Temples benchmark. The statistics of accuracy, run-time and GPU memory on other representative stereo CNNs also validate the effectiveness of our proposed method.
The performance of image based stereo estimation suffers from lighting variations, repetitive patterns and homogeneous appearance. Moreover, to achieve good performance, stereo supervision requires sufficient densely-labeled data, which are hard to o btain. In this work, we leverage small amount of data with very sparse but accurate disparity cues from LiDAR to bridge the gap. We propose a novel sparsity expansion technique to expand the sparse cues concerning RGB images for local feature enhancement. The feature enhancement method can be easily applied to any stereo estimation algorithms with cost volume at the test stage. Extensive experiments on stereo datasets demonstrate the effectiveness and robustness across different backbones on domain adaption and self-supervision scenario. Our sparsity expansion method outperforms previous methods in terms of disparity by more than 2 pixel error on KITTI Stereo 2012 and 3 pixel error on KITTI Stereo 2015. Our approach significantly boosts the existing state-of-the-art stereo algorithms with extremely sparse cues.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا