ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering Exotic AGN behind the Magellanic Clouds

123   0   0.0 ( 0 )
 نشر من قبل Clara Marie Pennock M.Sci.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nearby Magellanic Clouds system covers more than 200 square degrees on the sky. Much of it has been mapped across the electromagnetic spectrum at high angular resolution and sensitivity X-ray (XMM-Newton), UV (UVIT), optical (SMASH), IR (VISTA, WISE, Spitzer, Herschel), radio (ATCA, ASKAP, MeerKAT). This provides us with an excellent dataset to explore the galaxy populations behind the stellar-rich Magellanic Clouds. We seek to identify and characterise AGN via machine learning algorithms on this exquisite data set. Our project focuses not on establishing sequences and distributions of common types of galaxies and active galactic nuclei (AGN), but seeks to identify extreme examples, building on the recent accidental discoveries of unique AGN behind the Magellanic Clouds.

قيم البحث

اقرأ أيضاً

We report the identification of blazar candidates behind the Magellanic Clouds. The objects were selected from the Magellanic Quasars Survey (MQS), which targeted the entire Large Magellanic Cloud (LMC) and 70% of the Small Magellanic Cloud (SMC). Am ong the 758 MQS quasars and 898 of unidentified (featureless spectra) objects, we identified a sample of 44 blazar candidates, including 27 flat spectrum radio quasars and 17 BL Lacertae objects, respectively. All the blazar candidates from our sample were identified with respect to their radio, optical, and mid-infrared properties. The newly selected blazar candidates possess the long-term, multi-colour photometric data from the Optical Gravitational Lensing Experiment, multi-colour mid-infrared observations, and archival radio data for one frequency at least. In addition, for nine of them the radio polarization data are available. With such data, these objects can be used to study the physics behind the blazar variability detected in the optical and mid-infrared bands, as a tool to investigate magnetic field geometry of the LMC and SMC, and as an exemplary sample of point like sources most likely detectable in $gamma$-ray range with the newly emerging Cherenkov Telescope Array.
We present an optical variability study of 44 newly identified blazar candidates behind the Magellanic Clouds, including 27 flat spectrum radio quasars (FSRQs) and 17 BL Lacertae objects (BL Lacs). All objects in the sample possess high photometric a ccuracy and irregularly sampled optical light curves (LCs) in I filter from the long-term monitoring conducted by the Optical Gravitational Lensing Experiment. We investigated the variability properties to look for blazar-like characteristics and to analyze the long-term behaviour. We analyzed the LCs with the Lomb-Scargle periodogram to construct power spectral densities (PSDs), found breaks for several objects, and linked them with accretion disk properties. In this way we constrained the black hole (BH) masses of 18 FSRQs to lie within the range $8.18leqlog (M_{rm BH}/M_odot)leq 10.84$, assuming a wide range of possible BH spins. By estimating the bolometric luminosities, we applied the fundamental plane of active galactic nuclei variability as an independent estimate, resulting in $8.4leqlog (M_{rm BH}/M_odot)leq 9.6$, with a mean error of 0.3. Many of the objects have very steep PSDs, with high frequency spectral index in the range $3-7$. An alternative attempt to classify the LCs was made using the Hurst exponent, $H$, and the $mathcal{A}-mathcal{T}$ plane. Two FSRQs and four BL Lacs yielded $H>0.5$, indicating presence of long-term memory in the underlying process governing the variability. Additionally, two FSRQs with exceptional PSDs, stand out also in the $mathcal{A}-mathcal{T}$ plane.
We show that using mid-IR color selection to find active galactic nuclei (AGN) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Dee p, Wide-Field Survey data for the NOAO Deep Wide Field Survey Bootes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high purity catalogs of ~ 5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.
We present a comprehensive multi-frequency catalogue of radio sources behind the Large Magellanic Cloud between 0.2 and 20 GHz, gathered from a combination of new and legacy radio continuum surveys. This catalogue covers an area of $sim$144~deg$^2$ a t angular resolutions from 45 arcsec to $sim$3 arcmin. We find 6434 discrete radio sources in total, of which 3789 are detected at two or more radio frequencies. We estimate the median spectral index ($alpha$; where $S_{v}sim u^alpha$) of $alpha = -0.89 $ and mean of $-0.88 pm 0.48$ for 3636 sources detected exclusively at two frequencies (0.843 and 1.384 GHz) with similar resolution (FWHM $sim$40-45 arcsec). The large frequency range of the surveys makes it an effective tool to investigate Gigahertz Peak Spectrum (GPS), Compact Steep Spectrum (CSS) and Infrared Faint Radio sources populations within our sample. We find 10 GPS candidates with peak frequencies near 5 GHz, from which we estimate their linear size. 1866 sources from our catalogue are (CSS) candidates with $alpha <-0.8$. We found six candidates for High Frequency Peaker (HFP) sources, whose radio fluxes peak above 5 GHz and no sources with unconstrained peaks and $alpha~>0.5$. We found optical counterparts for 343 of the radio continuum sources, of which 128have a redshift measurement. Finally, we investigate the population of 123 Infrared Faint Radio Sources (IFRSs) found in this study.
We present results of a variability study in the optical band of 44 newly identified blazar candidates behind the Magellanic Clouds. Our sample contains 27 flat spectrum radio quasars (FSRQs) and 17 BL Lacertae objects (BL Lacs). However, only nine o f them are considered as secure blazar candidates, while the classification of the remaining 35 objects is still uncertain. All studied blazar candidates possess infrequently sampled optical light curves (LCs) in I filter provided by the Optical Gravitational Lensing Experiment group. The LCs were analysed with the Lomb-Scargle periodogram, the Hurst exponent $H$, and the $mathcal{A}-mathcal{T}$ plane, to look for blazar-like characteristic features and to study the long-term behaviour of the optical fluxes. The power law (PL) indices of the Lomb-Scargle power spectral density (PSD) of the FSRQ blazar candidates mostly lie in the range (1,2). In case of the BL Lacs they are located in the range (1,1.8). The PL PSD is indicative of a self-affine stochastic process characterised by $H$, underlying the observed variability. We find that the majority of analysed objects have $Hleq 0.5$, indicating short-term memory, whereas four BL Lacs and two FSRQs have $H>0.5$, implying long-term memory. 41 blazar candidates are located in the $mathcal{A}-mathcal{T}$ plane in the region available to PL plus Poisson noise processes. Interestingly, one FSRQ is located marginally below this region, while two FSRQs lie above the line $mathcal{T}=2/3$, i.e. they are even more noisy than white noise. The BL Lac candidates are characterised by higher $mathcal{A}$ values than FSRQs, i.e. $0.71pm 0.06$ and $0.29pm 0.05$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا