ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-range Single Molecule Forster Resonance Energy Transfer Between Alexa Dyes in Zero-Mode Waveguides

92   0   0.0 ( 0 )
 نشر من قبل Jerome Wenger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Zero-mode waveguides (ZMW) nanoapertures milled in metal films were proposed to improve the FRET efficiency and enable single molecule FRET detection beyond the 10 nm barrier, overcoming the restrictions of diffraction-limited detection in a homogeneous medium. However, the earlier ZMW demonstrations were limited to the Atto 550 - Atto 647N fluorophore pair, asking the question whether the FRET enhancement observation was an artefact related to this specific set of fluorescent dyes. Here, we use Alexa Fluor 546 and Alexa Fluor 647 to investigate single molecule FRET at large donor-acceptor separations exceeding 10 nm inside ZMWs. These Alexa fluorescent dyes feature a markedly different chemical structure, surface charge and hydrophobicity as compared to their Atto counterparts. Our single molecule data on Alexa 546 - Alexa 647 demonstrate enhanced FRET efficiencies at large separations exceeding 10 nm, extending the spatial range available for FRET and confirming the earlier conclusions. By showing that the FRET enhancement inside a ZMW does not depend on the set of fluorescent dyes, this report is an important step to establish the relevance of ZMWs to extend the sensitivity and detection range of FRET, while preserving its ability to work on regular fluorescent dye pairs.

قيم البحث

اقرأ أيضاً

Motivated by recent experiments on photon statistics from individual dye pairs planted on biomolecules and coupled by fluorescence resonance energy transfer (FRET), we show here that the FRET dynamics can be modelled by Gaussian random processes with colored noise. Using Monte-Carlo numerical simulations, the photon intensity correlations from the FRET pairs are calculated, and are turned out to be very close to those observed in experiment. The proposed stochastic description of FRET is consistent with existing theories for microscopic dynamics of the biomolecule that carries the FRET coupled dye pairs.
Holes in metal films block any transmitting light if the wavelength is much larger than the hole diameter, establishing such nanopores as so-called Zero Mode Waveguides (ZMWs). Molecules on the other hand, can still passage through these holes. We us e this to detect individual fluorophore-labelled molecules as they travel through a ZMW and thereby traverse from the dark region to the illuminated side, upon which they emit fluorescent light. This is beneficial both for background suppression and to prevent premature bleaching. We use palladium as a novel metal-film material for ZMWs, which is advantageous compared to conventionally used metals. We demonstrate that it is possible to simultaneously detect translocations of individual free fluorophores of different colors. Labeled DNA and protein biomolecules can be detected as well at the single-molecule level with a high signal-to-noise ratio and at high bandwidth, which opens the door to a variety of single-molecule biophysics studies.
Single molecule detection provides detailed information about molecular structures and functions, but it generally requires the presence of a fluorescent marker which can interfere with the activity of the target molecule or complicate the sample pro duction. Detecting a single protein with its natural UV autofluorescence is an attractive approach to avoid all the issues related to fluorescence labelling. However, the UV autofluorescence signal from a single protein is generally extremely weak. Here, we use aluminum plasmonics to enhance the tryptophan autofluorescence emission of single proteins in the UV range. Zero-mode waveguides nanoapertures enable observing the UV fluorescence of single label-free beta-galactosidase proteins with increased brightness, microsecond transit times and operation at micromolar concentrations. We demonstrate quantitative measurements of the local concentration, diffusion coefficient and hydrodynamic radius of the label-free protein over a broad range of zero-mode waveguide diameters. While the plasmonic fluorescence enhancement has generated a tremendous interest in the visible and near-infrared parts of the spectrum, this work pushes further the limits of plasmonic-enhanced single molecule detection into the UV range and constitutes a major step forward in our ability to interrogate single proteins in their native state at physiological concentrations.
When two or more metallic nanoparticles are in close proximity, their plasmonic modes may interact through the near field, leading to additional resonances of the coupled system or to shifts of their resonant frequencies. This process is analogous to atom-hybridization, as had been proposed by Gersten and Nitzan and modeled by Nordlander et al. The coupling between plasmonic modes can be in-phase (symmetric) or out-of-phase (anti-symmetric), reflecting correspondingly, the bonding and anti-bonding nature of such configurations. Since the incoming light redistributes the charge distribution around the metallic nanoparticles, its polarization features play a major role in the nonlinear optical probing of the energy-level landscape upon hybridization. Thus, controlling the nature of coupling between metallic nanostructures is of a great importance as it enables tuning their spectral responses leading to novel devices which may surpass the diffraction limit.
We present time-resolved photoluminescence measurements on two series of oligo-p-phenylenevinylene materials that self-assemble into supramolecular nanostructures with thermotropic reversibility in dodecane. One set of derivatives form chiral, helica l stacks while the second set form less organised, frustrated stacks. Here we study the effects of supramolecular organisation on the resonance energy transfer rates. We measure these rates in nanoassemblies formed with mixed blends of oligomers and compare them with the rates predicted by Foerster theory. Our results and analysis show that control of supramolecular order in the nanometre lengthscale has a dominant effect on the efficiency and dimentionality of resonance energy transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا