ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Precoder Design for 3D Massive MIMO Downlink with A Posteriori Channel Model

236   0   0.0 ( 0 )
 نشر من قبل An-An Lu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate the robust linear precoder design for three dimensional (3D) massive multi-input multi-output (MIMO) downlink with uniform planar array (UPA) and imperfect channel state information (CSI). In practical massive MIMO with UPAs, the number of antennas in each column or row is usually limited. The straightforward extension of the conventional DFT based beam domain channel model widely used in massive MIMO with uniform linear arrays (ULAs) can not apply. To overcome this issue, we establish a new beam domain channel model by using sampled steering vectors. Then, a novel method to obtain the beam domain channel power matrices and the instantaneous beam domain channel coefficients is proposed, and an a posteriori beam domain channel model which includes the channel aging and the spatial correlation is established. On the basis of the a posteriori channel model, we consider the robust precoder design with the expected weighted sum-rate maximization under a total power constraint. By viewing the power constraint as a Riemannian manifold, we transform the constrained optimization problem into an unconstrained optimization problem on the Riemannian manifold. Then, we derive an iterative algorithm to obtain the optimal precoders by setting the Riemannian gradient of the objective function to zero. Furthermore, we propose a low complexity robust precoder design by replacing the expected rates in the objective function with their upper bounds. Simulation results show that the proposed precoders can achieve significant performance gain than the widely used regularized zero forcing (RZF) precoder and signal to leakage noise ratio (SLNR) precoder.



قيم البحث

اقرأ أيضاً

140 - An-An Lu , Xiqi Gao , Wen Zhong 2017
In this paper, the design of robust linear precoders for the massive multi-input multi-output (MIMO) downlink with imperfect channel state information (CSI) is investigated. The imperfect CSI for each UE obtained at the BS is modeled as statistical C SI under a jointly correlated channel model with both channel mean and channel variance information, which includes the effects of channel estimation error, channel aging and spatial correlation. The design objective is to maximize the expected weighted sum-rate. By combining the minorize-maximize (MM) algorithm with the deterministic equivalent method, an algorithm for robust linear precoder design is derived. The proposed algorithm achieves a stationary point of the expected weighted sum-rate maximization problem. To reduce the computational complexity, two low-complexity algorithms are then derived. One for the general case, and the other for the case when all the channel means are zeros. For the later case, it is proved that the beam domain transmission is optimal, and thus the precoder design reduces to the power allocation optimization in the beam domain. Simulation results show that the proposed robust linear precoder designs apply to various mobile scenarios and achieve high spectral efficiency.
This paper investigates downlink channel estimation in frequency-division duplex (FDD)-based massive multiple-input multiple-output (MIMO) systems. To reduce the overhead of downlink channel estimation and uplink feedback in FDD systems, cascaded pre coding has been used in massive MIMO such that only a low-dimensional effective channel needs to be estimated and fed back. On the other hand, traditional channel estimations can hardly achieve the minimum mean-square-error (MMSE) performance due to lack of the a priori knowledge of the channels. In this paper, we design and analyze a strategy for downlink channel estimation based on the parametric model in massive MIMO with cascaded precoding. For a parametric model, channel frequency responses are expressed using the path delays and the associated complex amplitudes. The path delays of uplink channels are first estimated and quantized at the base station, then fed forward to the user equipment (UE) through a dedicated feedforward link. In this manner, the UE can obtain the a priori knowledge of the downlink channel in advance since it has been demonstrated that the downlink and the uplink channels can have identical path delays. Our analysis and simulation results show that the proposed approach can achieve near-MMSE performance.
205 - Pengfei Ma 2008
This paper proposes a roust downlink multiuser MIMO scheme that exploits the channel mean and antenna correlations to alleviate the performance penalty due to the mismatch between the true and estimated CSI.
We propose four hybrid combiner/precoder for downlink mmWave massive MU-MIMO systems. The design of a hybrid combiner/precoder is divided in two parts, analog and digital. The system baseband model shows that the signal processed by the mobile statio n can be interpreted as a received signal in the presence of colored Gaussian noise, therefore, since the digital part of the combiner and precoder do not have constraints for their generation, their designs can be based on any traditional signal processing that takes into account this kind of noise. To the best of our knowledge, this was not considered by previous works. A more realistic and appropriate design is described in this paper. Also, the approaches adopted in the literature for the designing of the combiner/precoder analog parts do not try to avoid or even reduce the inter user/symbol interference, they concentrate on increasing the signal-to-noise ratio (SNR). We propose a simple solution that decreases the interference while maintaining large SNR. In addition, one of the proposed hybrid combiners reaches the maximum value of our objective function according with the Hadamards inequality. Numerical results illustrate the BER performance improvements resulting from our proposals. In addition, a simple detection approach can be used for data estimation without significant performance loss.
This paper investigates the linear precoder design for $K$-user interference channels of multiple-input multiple-output (MIMO) transceivers under finite alphabet inputs. We first obtain general explicit expressions of the achievable rate for users in the MIMO interference channel systems. We study optimal transmission strategies in both low and high signal-to-noise ratio (SNR) regions. Given finite alphabet inputs, we show that a simple power allocation design achieves optimal performance at high SNR whereas the well-known interference alignment technique for Gaussian inputs only utilizes a partial interference-free signal space for transmission and leads to a constant rate loss when applied naively to finite-alphabet inputs. Moreover, we establish necessary conditions for the linear precoder design to achieve weighted sum-rate maximization. We also present an efficient iterative algorithm for determining precoding matrices of all the users. Our numerical results demonstrate that the proposed iterative algorithm achieves considerably higher sum-rate under practical QAM inputs than other known methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا