ﻻ يوجد ملخص باللغة العربية
The fluctuations-driven continuous quantum criticality has sparked tremendous interest in condensed matter physics. It has been verified that the gapless fermions fluctuations can change the nature of phase transition at criticality. In this paper, we study the fermionic quantum criticality with enlarged Ising$times$Ising fluctuations in honeycomb lattice materials. The Gross-Neveu-Yukawa theory for the multicriticality between the semimetallic phase and two ordered phases that break Ising symmetry is investigated by employing perturbative renormalization group approach. We first determine the critical range in which the quantum fluctuations may render the phase transition continuous. We find that the Ising criticality is continuous only when the flavor numbers of four-component Dirac fermions $N_fgeq1/4$. Using the $epsilon$ expansion in four space-time dimensions, we then study the Ising$times$Ising multicriticality stemming from the symmetry-breaking electronic instabilities. We analyze the underlying fixed-point structure and compute the critical exponents for the Ising$times$Ising Gross-Neveu-Yukawa universality class. Further, the correlation scaling behavior for the fermion bilinear on the honeycomb lattice at the multicritical point are also briefly discussed.
We establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end we study the quantum phase transition of gapless Dirac ferm
Energy transfer from electrons to phonons is an important consideration in any Weyl or Dirac semimetal based application. In this work, we analytically calculate the cooling power of acoustic phonons, i.e. the energy relaxation rate of electrons whic
Weyl and Dirac semimetals are three dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three dimensional analogs of graphene, they have generated much recent interest. Deep connections exi
The complete lack of theoretical understanding of the quantum critical states found in the heavy fermion metals and the normal states of the high-T$_c$ superconductors is routed in deep fundamental problem of condensed matter physics: the infamous mi
We study the electronic contribution to the thermal conductivity and the thermopower of Weyl and Dirac semimetals using a semiclassical Boltzmann approach. We investigate the effect of various relaxation processes including disorder and interactions