ترغب بنشر مسار تعليمي؟ اضغط هنا

The Master Stability Function for Synchronization in Simplicial Complexes

72   0   0.0 ( 0 )
 نشر من قبل Mattia Frasca
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

All interesting and fascinating collective properties of a complex system arise from the intricate way in which its components interact. Various systems in physics, biology, social sciences and engineering have been successfully modelled as networks of coupled dynamical systems, where the graph links describe pairwise interactions. This is, however, too strong a limitation, as recent studies have revealed that higher-order many-body interactions are present in social groups, ecosystems and in the human brain, and they actually affect the emergent dynamics of all these systems. Here, we introduce a general framework that allows to study coupled dynamical systems accounting for the precise microscopic structure of their interactions at any possible order. We consider the most general ensemble of identical dynamical systems, organized on the nodes of a simplicial complex, and interacting through synchronization-non-invasive coupling function. The simplicial complex can be of any dimension, meaning that it can account, at the same time, for pairwise interactions, three-body interactions and so on. In such a broad context, we show that complete synchronization exists as an invariant solution, and we give the necessary condition for it to be observed as a stable state in terms of a Master Stability Function. This generalizes the existing results valid for pairwise interactions (i.e. graphs) to the case of complex systems with the most general possible architecture. Moreover, we show how the approach can be simplified for specific, yet frequently occurring, instances, and we verify all our theoretical predictions in synthetic and real-world systems. Given the completely general character of the method proposed, our results contribute to the theory of dynamical systems with many-body interactions and can find applications in an extremely wide range of practical cases.



قيم البحث

اقرأ أيضاً

In this letter, we perform a sensitivity analysis on the master stability function approach for the synchronization of networks of coupled dynamical systems. More specifically, we analyze the linear stability of a nearly synchronized solution for a n etwork of coupled dynamical systems, for which the individual dynamics and output functions of each unit are approximately identical and the sums of the entries in the rows of the coupling matrix slightly deviate from zero. The motivation for this parametric study comes from experimental instances of synchronization in human-made or natural settings, where ideal conditions are difficult to observe.
Synchronization has been the subject of intense research during decades mainly focused on determining the structural and dynamical conditions driving a set of interacting units to a coherent state globally stable. However, little attention has been p aid to the description of the dynamical development of each individual networked unit in the process towards the synchronization of the whole ensemble. In this paper, we show how in a network of identical dynamical systems, nodes belonging to the same degree class differentiate in the same manner visiting a sequence of states of diverse complexity along the route to synchronization independently on the global network structure. In particular, we observe, just after interaction starts pulling orbits from the initially uncoupled attractor, a general reduction of the complexity of the dynamics of all units being more pronounced in those with higher connectivity. In the weak coupling regime, when synchronization starts to build up, there is an increase in the dynamical complexity whose maximum is achieved, in general, first in the hubs due to their earlier synchronization with the mean field. For very strong coupling, just before complete synchronization, we found a hierarchical dynamical differentiation with lower degree nodes being the ones exhibiting the largest complexity departure. We unveil how this differentiation route holds for several models of nonlinear dynamics including toroidal chaos and how it depends on the coupling function. This study provides new insights to understand better strategies for network identification and control or to devise effective methods for network inference.
It is known that intra-layer adaptive coupling among connected oscillators instigates explosive synchronization (ES) in multilayer networks. Taking an altogether different cue in the present work, we consider inter-layer adaptive coupling in a multip lex network of phase oscillators and show that the scheme gives rise to ES with an associated hysteresis irrespective of the network architecture of individual layers. The hysteresis is shaped by the inter-layer coupling strength and the frequency mismatch between the mirror nodes. We provide rigorous mean-field analytical treatment for the measure of global coherence and manifest they are in a good match with respective numerical assessments. Moreover, the analytical predictions provide a complete insight into how adaptive multiplexing suppresses the formation of a giant cluster, eventually giving birth to ES. The study will help in spotlighting the role of multiplexing in the emergence of ES in real-world systems represented by multilayer architecture. Particularly, it is relevant to those systems which have limitations towards change in intra-layer coupling strength.
Inter-layer synchronization is a dynamical state occurring in multi-layer networks composed of identical nodes. The state corresponds to have all layers synchronized, with nodes in each layer which do not necessarily evolve in unison. So far, the stu dy of such a solution has been restricted to the case in which all layers had an identical connectivity structure. When layers are not identical, the inter-layer synchronous state is no longer a stable solution of the system. Nevertheless, when layers differ in just a few links, an approximate treatment is still feasible, and allows one to gather information on whether and how the system may wander around an inter-layer synchronous configuration. We report the details of an approximate analytical treatment for a two-layer multiplex, which results in the introduction of an extra inertial term accounting for structural differences. Numerical validation of the predictions highlights the usefulness of our approach, especially for small or moderate topological differences in the intra-layer coupling. Moreover, we identify a non-trivial relationship between the betweenness centrality of the missing links and the intra-layer coupling strength. Finally, by the use of two multiplexed identical layers of electronic circuits in a chaotic regime, we study the loss of inter-layer synchronization as a function of the betweenness centrality of the removed links.
91 - Can Xu , Xuebin Wang , 2020
We present an analytical description for the collective dynamics of oscillator ensembles with higher-order coupling encoded by simplicial structure, which serves as an illustrative and insightful paradigm for brain function and information storage. T he novel dynamics of the system, including abrupt desynchronization and multistability, are rigorously characterized and the critical points that correspond to a continuum of first-order phase transitions are found to satisfy universal scaling properties. More importantly, the underlying bifurcation mechanism giving rise to multiple clusters with arbitrary ensemble size is characterized using a rigorous spectral analysis of the stable cluster states. As a consequence of $SO_2$ group symmetry, we show that the continuum of abrupt desynchronization transitions result from the instability of a collective mode under the nontrivial antisymmetric manifold in the high dimensional phase space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا