ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced water affinity of histidine by transition metal ions

173   0   0.0 ( 0 )
 نشر من قبل Haiping Fang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transitional metal ions widely exist in biological environments and are crucial to many life-sustaining physiological processes. Recently, transition metal ion such as Cu$^{2+}$, Zn$^{2+}$, Ni$^{2+}$, have been shown can increase the solubilities of aromatic biomolecules. Comparing with Cu$^{2+}$, Zn$^{2+}$ shows less enhancement to the solubilities of biomolecules such as tryptophan (Trp). On the other hand, Zn$^{2+}$ has a higher concentration in human blood plasma and appears in protein the most among transition metal ions, clarifying whether Zn$^{2+}$ can enhance the solubilities of other aromatic amino acids is significantly important. Herein, we observed that the solubility of aromatic amino acid histidine (His) is greatly enhanced in ZnCl$_2$ solution. Based on first principle calculations, this enhancement of solubility is attributed to cation-$pi$ interaction between His and Zn$^{2+}$. Our results here are of great importance for the bioavailability of aromatic drugs and provide new insights for the understanding of physiological functions of Zn$^{2+}$.

قيم البحث

اقرأ أيضاً

134 - Le Jin , Xinrui Yang , Yu Zhu 2021
Many studies have revealed that confined water chain flipping is closely related to the spatial size and even quantum effects of the confinement environment. Here, we show that these are not the only factors that affect the flipping process of a conf ined water chain. First-principles calculations and analyses confirm that quantum tunnelling effects from the water chain itself, especially resonant tunnelling, enhance the hydrogen bond rotation process. Importantly, resonant tunnelling can result in tunnelling rotation of hydrogen bonds with a probability close to 1 with only 0.597 eV provided energy. Compared to sequential tunnelling, resonant tunnelling dominants water chain flipping at temperatures up to 20 K higher. Additionally, the ratio of the resonant tunnelling probability to the thermal disturbance probability at 200 K is at least ten times larger than that of sequential tunnelling, which further illustrates the enhancement of hydrogen bond rotation brought about by resonant tunnelling.
Photosynthetic water oxidation is a fundamental process that sustains the biosphere. A Mn$_{4}$Ca cluster embedded in the photosystem II protein environment is responsible for the production of atmospheric oxygen. Here, time-resolved x-ray emission s pectroscopy (XES) was used to observe the process of oxygen formation in real time. These experiments reveal that the oxygen evolution step, initiated by three sequential laser flashes, is accompanied by rapid (within 50 $mu$s) changes to the Mn K$beta$ XES spectrum. However, no oxidation of the Mn$_{4}$Ca core above the all Mn$^{text{IV}}$ state was detected to precede O-O bond formation. A new mechanism featuring Mn$^{text{IV}}$=O formation in the S$_{3}$ state is proposed to explain the spectroscopic results. This chemical formulation is consistent with the unique reactivity of the S$_{3}$ state and explains facilitation of the following S$_{3}$ to S$_{0}$ transition, resolving in part the kinetic limitations associated with O-O bond formation. In the proposed mechanism, O-O bond formation precedes transfer of the final (4$^{text{th}}$) electron from the Mn$_{4}$Ca cluster, in agreement with experiment.
100 - B. K. Sahoo 2021
We present electric dipole polarizabilities ($alpha_d$) of the alkali-metal negative ions, from H$^-$ to Fr$^-$, by employing four-component relativistic many-body methods. Differences in the results are shown by considering Dirac-Coulomb (DC) Hamilt onian, DC Hamiltonian with the Breit interaction, and DC Hamiltonian with the lower-order quantum electrodynamics interactions. At first, these interactions are included self-consistently in the Dirac-Hartree-Fock (DHF) method, and then electron correlation effects are incorporated over the DHF wave functions in the second-order many-body perturbation theory, random phase approximation and coupled-cluster (CC) theory. Roles of electron correlation effects and relativistic corrections are analyzed using the above many-body methods with size of the ions. We finally quote precise values of $alpha_d$ of the above negative ions by estimating uncertainties to the CC results, and compare them with other calculations wherever available.
Solvation free energy is an important quantity in Computational Chemistry with a variety of applications, especially in drug discovery and design. The accurate prediction of solvation free energies of small molecules in water is still a largely unsol ved problem, which is mainly due to the complex nature of the water-solute interactions. In this letter we develop a scheme for the determination of the electrostatic contribution to the solvation free energy of charged molecules based on nonlocal electrostatics involving a minimal parameter set which in particular allows to introduce atomic radii in a consistent way. We test our approach on simple ions and small molecules for which both experimental results and other theoretical descriptions are available for quantitative comparison. We conclude that our approach is both physically transparent and quantitatively reliable.
We investigated the specific electronic energy deposition by protons and He ions with keV energies in different transition metal nitrides of technological interest. Data were obtained from two different time-of-flight ion scattering setups and show e xcellent agreement. For protons interacting with light nitrides, i.e. TiN, VN and CrN, very similar stopping cross sections per atom were found, which coincide with literature data of N2 gas for primary energies <= 25 keV. In case of the chemically rather similar nitrides with metal constituents from the 5th and 6th period, i.e. ZrN and HfN, the electronic stopping cross sections were measured to exceed what has been observed for molecular N2 gas. For He ions, electronic energy loss in all nitrides was found to be significantly higher compared to the equivalent data of N2 gas. Additionally, deviations from velocity proportionality of the observed specific electronic energy loss are observed. A comparison with predictions from density functional theory for protons and He ions yields a high apparent efficiency of electronic excitations of the target for the latter projectile. These findings are considered to indicate the contributions of additional mechanisms besides electron hole pair excitations, such as electron capture and loss processes of the projectile or promotion of target electrons in atomic collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا