ترغب بنشر مسار تعليمي؟ اضغط هنا

What does a quantum black hole look like?

74   0   0.0 ( 0 )
 نشر من قبل Sinya Aoki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We take a first step towards a holographic description of a black hole by means of a flow equation. We consider a free theory of multiple scalar fields at finite temperature and study its holographic geometry defined through a free flow of the scalar fields. We find that the holographic metric has the following properties: i) It is an asymptotic Anti-de Sitter (AdS) black brane metric with some unknown matter contribution. ii) It has no coordinate singularity and milder curvature singularity. iii) Its time component decays exponentially at a certain AdS radial slice. We find that the matter spreads all over the space, which we speculate to be due to thermal excitation of infinitely many massless higher spin fields. We conjecture that the above three are generic features of a black hole holographically realized by the flow equation method.

قيم البحث

اقرأ أيضاً

Obtaining a prize postdoctoral fellowship in astronomy and astrophysics involves a number of factors, many of which cannot be quantified. One criterion that can be measured is the publication record of an applicant. The publication records of past fe llowship recipients may, therefore, provide some quantitative guidance for future prospective applicants. We investigated the publication patterns of recipients of the NASA prize postdoctoral fellowships in the Hubble, Einstein, and Sagan programs from 2014 through 2017, using the NASA ADS reference system. We tabulated their publications at the point where fellowship applications were submitted, and we find that the 133 fellowship recipients in that time frame had a median of 6 +/- 2 first-author publications, and 14 +/- 6 co-authored publications. The full range of first author papers is 1 to 15, and for all papers ranges from 2 to 76, indicating very diverse publication patterns. Thus, while fellowship recipients generally have strong publication records, the distribution of both first-author and co-authored papers is quite broad; there is no apparent threshold of publications necessary to obtain these fellowships. We also examined the post-PhD publication rates for each of the three fellowship programs, between male and female recipients, across the four years of the analysis and find no consistent trends. We hope that these findings will prove a useful reference to future junior scientists.
We develop an effective theory which describes black holes with quantum mechanical horizons that is valid at scales long compared to the Schwarzschild radius but short compared to the lifetime of the black hole. Our formalism allows one to calculate the quantum mechanical effects in scattering processes involving black hole asymptotic states. We point out that the EFT Wightman functions which describe Hawking radiation in the Unruh vacuum are not Planck suppressed and are actually {it enhanced} relative to those in the Boulware vacuum, for which such radiation is absent. We elaborate on this point showing how the non-Planck suppressed effects of Hawking radiation cancel in classical observables.
We perform quantum Monte Carlo simulations in the background of a classical black hole. The lattice discretized path integral is numerically calculated in the Schwarzschild metric and in its approximated metric. We study spontaneous symmetry breaking of a real scalar field theory. We observe inhomogeneous symmetry breaking induced by inhomogeneous gravitational field.
We improve upon the simple model studied by Casadio and Orlandi [JHEP 1308 (2013) 025] for a black hole as a condensate of gravitons. Instead of the harmonic oscillator potential, the Poschl-Teller potential is used, which allows for a continuum of s cattering states. The quantum mechanical model is embedded into a relativistic wave equation for a complex Klein-Gordon field, and the charge of the field is interpreted as the gravitational charge (mass) carried by the graviton condensate.
A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of a pair of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field $h_{mu u}(x)$ and position $x_i^mu(tau_i)$ of each black hole on equal footing. Using these both the next-order classical gravitational radiation $langle h^{mu u}(k)rangle$ (previously unknown) and deflection $Delta p_i^mu$ from a binary black hole scattering event are obtained. The latter can also be obtained from the eikonal phase of a $2to2$ scalar S-matrix, which we show to correspond to the free energy of the WQFT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا