ترغب بنشر مسار تعليمي؟ اضغط هنا

Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

72   0   0.0 ( 0 )
 نشر من قبل You Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors.



قيم البحث

اقرأ أيضاً

74 - Christophe Moy 2019
This paper describes the principles and implementation results of reinforcement learning algorithms on IoT devices for radio collision mitigation in ISM unlicensed bands. Learning is here used to improve both the IoT network capability to support a l arger number of objects as well as the autonomy of IoT devices. We first illustrate the efficiency of the proposed approach in a proof-of-concept based on USRP software radio platforms operating on real radio signals. It shows how collisions with other RF signals present in the ISM band are diminished for a given IoT device. Then we describe the first implementation of learning algorithms on LoRa devices operating in a real LoRaWAN network, that we named IoTligent. The proposed solution adds neither processing overhead so that it can be ran in the IoT devices, nor network overhead so that no change is required to LoRaWAN. Real life experiments have been done in a realistic LoRa network and they show that IoTligent device battery life can be extended by a factor 2 in the scenarios we faced during our experiment.
159 - Udit Gupta 2015
As network size continues to grow exponentially, there has been a proportionate increase in the number of nodes in the corresponding network. With the advent of Internet of things (IOT), it is assumed that many more devices will be connected to the e xisting network infrastructure. As a result, monitoring is expected to get more complex for administrators as networks tend to become more heterogeneous. Moreover, the addressing for IOTs would be more complex given the scale at which devices will be added to the network and hence monitoring is bound to become an uphill task due to management of larger range of addresses. This paper will throw light on what kind of monitoring mechanisms can be deployed in internet of things (IOTs) and their overall effectiveness.
65 - Chao Xu , Yiping Xie , Xijun Wang 2021
In the Internet of Things (IoT) networks, caching is a promising technique to alleviate energy consumption of sensors by responding to users data requests with the data packets cached in the edge caching node (ECN). However, without an efficient stat us update strategy, the information obtained by users may be stale, which in return would inevitably deteriorate the accuracy and reliability of derived decisions for real-time applications. In this paper, we focus on striking the balance between the information freshness, in terms of age of information (AoI), experienced by users and energy consumed by sensors, by appropriately activating sensors to update their current status. Particularly, we first depict the evolutions of the AoI with each sensor from different users perspective with time steps of non-uniform duration, which are determined by both the users data requests and the ECNs status update decision. Then, we formulate a non-uniform time step based dynamic status update optimization problem to minimize the long-term average cost, jointly considering the average AoI and energy consumption. To this end, a Markov Decision Process is formulated and further, a dueling deep R-network based dynamic status update algorithm is devised by combining dueling deep Q-network and tabular R-learning, with which challenges from the curse of dimensionality and unknown of the environmental dynamics can be addressed. Finally, extensive simulations are conducted to validate the effectiveness of our proposed algorithm by comparing it with five baseline deep reinforcement learning algorithms and policies.
Internet of Things (IoT) and Network Softwarization are fast becoming core technologies of information systems and network management for next generation Internet. The deployment and applications of IoT ranges from smart cities to urban computing, an d from ubiquitous healthcare to tactile Internet. For this reason the physical infrastructure of heterogeneous network systems has become more complicated, and thus requires efficient and dynamic solutions for management, configuration, and flow scheduling. Network softwarization in the form of Software Defined Networks (SDN) and Network Function Virtualization (NFV) has been extensively researched for IoT in recent past. In this article we present a systematic and comprehensive review of virtualization techniques explicitly designed for IoT networks. We have classified the literature into software defined networks designed for IoT, function virtualization for IoT networks, and software defined IoT networks. These categories are further divided into works which present architectural, security, and management solutions. In addition, the paper highlights a number of short term and long term research challenges and open issues related to adoption of software defined Internet of things.
The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا