ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas phase Elemental abundances in Molecular cloudS (GEMS). II. On the quest for the sulphur reservoir in molecular clouds: the $H_{2}S$ case

188   0   0.0 ( 0 )
 نشر من قبل David Navarro Almaida
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium, and the identity of the main sulphur reservoir is still an open question. Our goal is to investigate the H$_{2}$S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Using millimeter observations of CS, SO, H$_{2}$S, and their isotopologues, we determine the physical conditions and H$_{2}$S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model Nautilus is then used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H$_2$S abundance. Our model shows that chemical desorption is the main source of gas-phase H$_2$S in dark cores. The measured H$_{2}$S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when $n_{rm H}>2times10^{4}$. This change in the desorption rate is consistent with the formation of thick H$_2$O and CO ice mantles on grain surfaces. The observed SO and H$_2$S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of $5-10$. Along the three cores, atomic S is predicted to be the main sulphur reservoir. We conclude that the gaseous H$_2$S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H$_2$S. The behavior of the observed H$_{2}$S abundance suggests a changing desorption efficiency, which would probe the snowline in these cores. Our model, however, overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.

قيم البحث

اقرأ أيضاً

GEMS is an IRAM 30m Large Program whose aim is determining the elemental depletions and the ionization fraction in a set of prototypical star-forming regions. This paper presents the first results from the prototypical dark cloud TMC 1. Extensive mil limeter observations have been carried out with the IRAM 30m telescope (3mm and 2mm) and the 40m Yebes telescope (1.3cm and 7mm) to determine the fractional abundances of CO, HCO+, HCN, CS, SO, HCS+, and N2H+ in three cuts which intersect the dense filament at the well-known positions TMC 1-CP, TMC 1-NH3, and TMC 1-C, covering a visual extinction range from Av~3 to ~20mag. Two phases with differentiated chemistry can be distinguished: i) the translucent envelope with molecular hydrogen densities of (1-5)x10$^3$ cm$^{-3}$; and ii) the dense phase, located at Av>10mag, with molecular hydrogen densities >10$^4$ cm$^{-3}$. Observations and modeling show that the gas phase abundances of C and O progressively decrease along the C+/C/CO transition zone where C/H~8x10$^{-5}$ and C/O~0.8-1, until the beginning of the dense phase at Av~10 mag. This is consistent with the grain temperatures being below the CO evaporation temperature in this region. In the case of sulfur, a strong depletion should occur before the translucent phase where we estimate a S/H~(0.4 - 2.2) x10$^{-6}$, an abundance ~7-40 times lower than the solar value. A second strong depletion must be present during the formation of the thick icy mantles to achieve the values of S/H measured in the dense cold cores (S/H~8x10$^{-8}$). Based on our chemical modeling, we constrain the value of $zeta_{rm H_2}$ to ~(0.5 - 1.8) x10$^{-16}$ s$^{-1}$ in the translucent cloud.
Gas phase Elemental abundances in Molecular CloudS (GEMS) is an IRAM 30m Large Program designed to estimate the S, C, N, and O depletions and gas ionization degree, X(e-), in a set of star-forming filaments of Taurus, Perseus and Orion. Our immediate goal is to build up a complete database of molecular abundances that can serve as an observational basis for estimating X(e-) and the C, O, N, and S depletions through chemical modeling. We observed and derived the abundances of 14 species (13CO, C18O, HCO+, H13CO+, HC18O+, HCN, H13CN, HNC, HCS+, CS, SO, 34SO, H2S, and OCS) in 244 positions, covering the AV 3 to 100 mag, n(H2) a few 10$^{3}$ to 10$^6$ cm$^{-3}$, and Tk 10 to 30 K ranges in these clouds, avoiding protostars, HII regions, and outflows. A statistical analysis is carried out to identify general trends between different species and with physical parameters. Relations between molecules reveal strong linear correlations which define three different families: (1) 13CO and C18O; (2) H13CO+, HC18O+, H13CN, and HNC; and (3) the S-bearing molecules. The abundances of the CO isotopologs increase with the gas kinetic temperature until TK 15 K. For higher temperatures, the abundance remains constant with a scatter of a factor of 3. The abundances of H13CO+, HC18O+, H13CN, and HNC are well correlated with each other, and all of them decrease with molecular hydrogen density, following the law n(H2)$^{-0.8pm0.2}$. The abundances of S-bearing species also decrease with n(H2) at a rate of (S-bearing/H)gas n(H2)$^{-0.6pm0.1}$. The abundances of molecules belonging to groups 2 and 3 do not present any clear trend with gas temperature. At scales of molecular clouds, the C18O abundance is the quantity that better correlates with the cloud mass. We discuss the utility of the 13CO/C18O, HCO+/H13CO+, and H13CO+/H13CN abundance ratios as chemical diagnostics of star formation in external galaxies.
115 - N. Bulut , O. Roncero , A. Aguado 2020
CS is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstella r medium in our Galaxy and external galaxies. Chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. The CS+O -> CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150-400 K, but the extrapolation to lower temperatures is doubtful. Here we calculate the CS+O reaction rate at temperatures <150 K which are prevailing in the interstellar medium. We performed ab initio calculations to obtain the three lowest PES of the CS+O system. These PESs are used to study the reaction dynamics, using several methods to eventually calculate the CS+O thermal reaction rates. We compare the results of our theoretical calculations for 150-400 K with those obtained in the laboratory. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150-400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, which is consistent with the extrapolation of experimental data using the Arrhenius expression. We use the updated chemical network to model the sulfur chemistry in TMC1 based on molecular abundances determined from GEMS project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.
We perform ideal MHD high resolution AMR simulations with driven turbulence and self-gravity and find that long filamentary molecular clouds are formed at the converging locations of large-scale turbulence flows and the filaments are bounded by gravi ty. The magnetic field helps shape and reinforce the long filamentary structures. The main filamentary cloud has a length of ~4.4 pc. Instead of a monolithic cylindrical structure, the main cloud is shown to be a collection of fiber/web-like sub-structures similar to filamentary clouds such as L1495. Unless the line-of-sight is close to the mean field direction, the large-scale magnetic field and striations in the simulation are found roughly perpendicular to the long axis of the main cloud, similar to 1495. This provides strong support for a large-scale moderately strong magnetic field surrounding L1495. We find that the projection effect from observations can lead to incorrect interpretations of the true three-dimensional physical shape, size, and velocity structure of the clouds. Helical magnetic field structures found around filamentary clouds that are interpreted from Zeeman observations can be explained by a simple bending of the magnetic field that pierces through the cloud. We demonstrate that two dark clouds form a T-shape configuration which are strikingly similar to the Infrared dark cloud SDC13 leading to the interpretation that SDC13 results from a collision of two long filamentary clouds. We show that a moderately strong magnetic field (M_A ~ 1) is crucial for maintaining a long and slender filamentary cloud for a long period of time ~0.5 million years.
We show that the inter-cloud Larson scaling relation between mean volume density and size $rhopropto R^{-1}$, which in turn implies that mass $Mpropto R^2$, or that the column density $N$ is constant, is an artifact of the observational methods used. Specifically, setting the column density threshold near or above the peak of the column density probability distribution function Npdf ($Nsim 10^{21}$ cmalamenos 2) produces the Larson scaling as long as the Npdf decreases rapidly at higher column densities. We argue that the physical reasons behind local clouds to have this behavior are that (1) this peak column density is near the value required to shield CO from photodissociation in the solar neighborhood, and (2) gas at higher column densities is rare because it is susceptible to gravitational collapse into much smaller structures in specific small regions of the cloud. Similarly, we also use previous results to show that if instead a threshold is set for the volume density, the density will appear to be constant, implying thus that $M propto R^3$. Thus, the Larson scaling relation does not provide much information on the structure of molecular clouds, and does not imply either that clouds are in Virial equilibrium, or have a universal structure. We also show that the slope of the $M-R$ curve for a single cloud, which transitions from near-to-flat values for large radii to $alpha=2$ as a limiting case for small radii, depends on the properties of the Npdf.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا