ترغب بنشر مسار تعليمي؟ اضغط هنا

Protocols for long-distance quantum communication with single $^{167}$Er ions

84   0   0.0 ( 0 )
 نشر من قبل Faezeh Kimiaee Asadi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We design a quantum repeater architecture using individual $^{167}$Er ions doped into Y$_2$SiO$_5$ crystal. This ion is a promising candidate for a repeater protocol because of its long hyperfine coherence time in addition to its ability to emit photons within the telecommunication wavelength range. To distribute entanglement over a long distance, we propose two different swapping gates between nearby ions using the exchange of virtual cavity photons and the electric dipole-dipole interaction. We analyze their expected performance, and discuss their strengths and weaknesses. Then, we show that a post-selection approach can be implemented to improve the gate fidelity of the virtual photon exchange scheme by monitoring cavity emission. Finally, we use our results for the swapping gates to estimate the end-to-end fidelity and distribution rate for the protocol.



قيم البحث

اقرأ أيضاً

The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for long-distance quantum communication with atomic ensembles is analyzed. Its fidelity and throughput in entanglement distribution, entanglement swapping, and quantum teleportation i s derived within a framework that accounts for multiple excitations in the ensembles as well as loss and asymmetries in the channel. The DLCZ performance metrics that are obtained are compared to the corresponding results for the trapped-atom quantum communication architecture that has been proposed by a team from the Massachusetts Institute of Technology and Northwestern University (MIT/NU). Both systems are found to be capable of high-fidelity entanglement distribution. However, the DLCZ scheme only provides conditional teleportation and repeater operation, whereas the MIT/NU architecture affords full Bell-state measurements on its trapped atoms. Moreover, it is shown that achieving unity conditional fidelity in DLCZ teleportation and repeater operation requires ideal photon-number resolving detectors. The maximum conditional fidelities for DLCZ teleportation and repeater operation that can be realized with non-resolving detectors are 1/2 and 2/3, respectively.
Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (>1000km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters, as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.
High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a k ey role in quantum repeaters. The previous significant entanglement purification experiments require two pairs of low-quality entangled states and were demonstrated in table-top. Here we propose and report a high-efficiency and long-distance entanglement purification using only one pair of hyperentangled states. We also demonstrate its practical application in entanglement-based quantum key distribution (QKD). One pair of polarization spatial-mode hyperentanglement was distributed over 11 km multicore fiber (noisy channel). After purification, the fidelity of polarization entanglement arises from 0.771 to 0.887 and the effective key rate in entanglement-based QKD increases from 0 to 0.332. The values of Clauser-Horne-Shimony-Holt (CHSH) inequality of polarization entanglement arises from 1.829 to 2.128. Moreover, by using one pair of hyperentanglement and deterministic controlled-NOT gate, the total purification efficiency can be estimated as 6.6x10^3 times than the experiment using two pairs of entangled states with spontaneous parametric down-conversion (SPDC) sources. Our results offer the potential to be implemented as part of a full quantum repeater and large scale quantum network.
We build and test a single-photon detector based on a Si avalanche photodiode Excelitas 30902SH thermoelectrically cooled to -100 deg. C. Our detector has dark count rate below 1 Hz, 500 um diameter photosensitive area, photon detection efficiency ar ound 50%, afterpulsing less than 0.35%, and timing jitter under 1 ns. These characteristics make it suitable for long-distance free-space quantum communication links, which we briefly discuss. We also report an improved method that we call long-time afterpulsing analysis, used to determine and visualise long trap lifetimes at different temperatures.
127 - Fang-Yu Hong , Shi-Jie Xiong , 2010
We propose a scheme for long-distance quantum communication where the elementary entanglement is generated through two-photon interference and quantum swapping is performed through one-photon interference. Local polarization maximally entangled state s of atomic ensembles are generated by absorbing a single photon from on-demand single-photon sources. This scheme is robust against phase fluctuations in the quantum channels, moreover speeds up long-distance high-fidelity entanglement generation rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا