ترغب بنشر مسار تعليمي؟ اضغط هنا

A common explanation of the Hubble tension and anomalous cold spots in the CMB

62   0   0.0 ( 0 )
 نشر من قبل Andras Kovacs
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard cosmological paradigm narrates a reassuring story of a universe currently dominated by an enigmatic dark energy component. Disquietingly, its universal explaining power has recently been challenged by, above all, the $sim4sigma$ tension in the values of the Hubble constant. Another, less studied anomaly is the repeated observation of integrated Sachs-Wolfe imprints $sim5times$ stronger than expected in the $Lambda$CDM model from R>100 $Mpc/h$ super-structures. Here we show that the inhomogeneous AvERA model of emerging curvature is capable of telling a plausible albeit radically different story that explains both observational anomalies without dark energy. We demonstrate that while stacked imprints of R>100 $Mpc/h$ supervoids in cosmic microwave background temperature maps can discriminate between the AvERA and $Lambda$CDM models, their characteristic differences may remain hidden using alternative void definitions and stacking methodologies. Testing the extremes, we then also show that the CMB Cold Spot can plausibly be explained in the AvERA model as an ISW imprint. The coldest spot in the AvERA map is aligned with multiple low-$z$ supervoids with R>100 $Mpc/h$ and central underdensity $delta_{0}approx-0.3$, resembling the observed large-scale galaxy density field in the Cold Spot area. We hence conclude that the anomalous imprint of supervoids may well be the canary in the coal mine, and existing observational evidence for dark energy should be re-interpreted to further test alternative models.

قيم البحث

اقرأ أيضاً

We study the covariance in the angular power spectrum estimates of CMB fluctuations when the primordial fluctuations are non-Gaussian. The non-Gaussian covariance comes from a nonzero connected four-point correlation function -- or the trispectrum in Fourier space -- and can be large when long-wavelength (super-CMB) modes are strongly coupled to short-wavelength modes. The effect of such non-Gaussian covariance can be modeled through additional freedom in the theoretical CMB angular power spectrum and can lead to different inferred values of the standard cosmological parameters relative to those in $Lambda$CDM. Taking the collapsed limit of the primordial trispectrum in the quasi-single field inflation model as an example, we study how the six standard $Lambda$CDM parameters shift when two additional parameters describing the trispectrum are allowed. The reduced statistical significance of the Hubble tension in the extended model allows us to combine the {it Planck} temperature data and the type Ia supernovae data from Panstarrs with the distance-ladder measurement of the Hubble constant. This combination of data shows strong evidence for a primordial trispectrum-induced non-Gaussian covariance, with a likelihood improvement of $Delta chi^2 approx -15$ (with two additional parameters) relative to $Lambda$CDM.
We introduce the numbers of hot and cold spots, $n_h$ and $n_c$, of excursion sets of the CMB temperature anisotropy maps as statistical observables that can discriminate different non-Gaussian models. We numerically compute them from simulations of non-Gaussian CMB temperature fluctuation maps. The first kind of non-Gaussian model we study is the local type primordial non-Gaussianity. The second kind of models have some specific form of the probability distribution function from which the temperature fluctuation value at each pixel is drawn, obtained using HEALPIX. We find the characteristic non-Gaussian deviation shapes of $n_h$ and $n_c$, which is distinct for each of the models under consideration. We further demonstrate that $n_h$ and $n_c$ carry additional information compared to the genus, which is just their linear combination, making them valuable additions to the Minkowski Functionals in constraining non-Gaussianity.
Braneworld models with induced gravity exhibit phantom-like behaviour of the effective equation of state of dark energy. They can, therefore, naturally accommodate higher values of $H_0$, preferred by recent local measurements, while satisfying the C MB constraints. We test the background evolution in such phantom braneworld scenarios with the current observational datasets. We find that the phantom braneworld prefers a higher value of $H_0$ even without the R19 prior, thereby providing a much better fit to the local measurements. Although this braneworld model cannot fully satisfy all combinations of cosmological observables, among existing dark energy candidates the phantom brane provides one of the most compelling explanations of cosmic evolution.
The $Lambda$CDM model provides a good fit to a large span of cosmological data but harbors areas of phenomenology. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the $4-6sigma$ disagreement between predictions of the Hubble constant $H_0$ by early time probes with $Lambda$CDM model, and a number of late time, model-independent determinations of $H_0$ from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demand a hypothesis with enough rigor to explain multiple observations--whether these invoke new physics, unexpected large-scale structures or multiple, unrelated errors. We present a thorough review of the problem, including a discussion of recent Hubble constant estimates and a summary of the proposed theoretical solutions. Some of the models presented are formally successful, improving the fit to the data in light of their additional degrees of freedom, restoring agreement within $1-2sigma$ between {it Planck} 2018, using CMB power spectra data, BAO, Pantheon SN data, and R20, the latest SH0ES Team measurement of the Hubble constant ($H_0 = 73.2 pm 1.3{rm,km,s^{-1},Mpc^{-1}}$ at 68% confidence level). Reduced tension might not simply come from a change in $H_0$ but also from an increase in its uncertainty due to degeneracy with additional physics, pointing to the need for additional probes. While no specific proposal makes a strong case for being highly likely or far better than all others, solutions involving early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity provide the best options until a better alternative comes along.[Abridged]
It is shown, from the two independent approaches of McCrea-Milne and of Zeldovich, that one can fully recover the set equations corresponding to the relativistic equations of the expanding universe of Friedmann-Lemaitre-Robertson-Walker geometry. Alt hough similar, the Newtonian and relativistic set of equations have a principal difference in the content and hence define two flows, local and global ones, thus naturally exposing the Hubble tension at the presence of the cosmological constant Lambda. From this, we obtain absolute constraints on the lower and upper values for the local Hubble parameter, sqrt{Lambda c^2/3} simeq 56.2$ and sqrt{Lambda c^2} simeq 97.3 (km/sec Mpc^{-1}), respectively. The link to the so-called maximum force--tension issue in cosmological models is revealed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا