ترغب بنشر مسار تعليمي؟ اضغط هنا

HD 165054: an astrometric calibration field for high-contrast imagers in Baades Window

528   0   0.0 ( 0 )
 نشر من قبل Meiji Nguyen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the HD 165054 astrometric calibration field that has been periodically observed with the Gemini Planet Imager. HD 165054 is a bright star within Baades Window, a region of the galactic plane with relatively low extinction from interstellar dust. HD 165054 was selected as a calibrator target due to the high number density of stars within this region ($sim 3$ stars per square arcsecond with $H<22$), necessary because of the small field-of-view of the Gemini Planet Imager. Using nine epochs spanning over five years, we have fit a standard five-parameter astrometric model to the astrometry of seven background stars within close proximity to HD 165054 (angular separation $< 2$ arcsec). We achieved a proper motion precision of $sim 0.3$ mas/yr, and constrained the parallax of each star to be $lesssim 1$ mas. Our measured proper motions and parallax limits are consistent with the background stars being a part of the galactic bulge. Using these measurements we find no evidence of any systematic trend of either the plate scale or the north angle offset of GPI between 2014 and 2019. We compared our model describing the motions of the seven background stars to observations of the same field in 2014 and 2018 obtained with Keck/NIRC2, an instrument with an excellent astrometric calibration. We find that predicted position of the background sources is consistent with that measured by NIRC2, within the uncertainties of the calibration of the two instruments. In the future, we will use this field as a standard astrometric calibrator for the upgrade of GPI and potentially for other high-contrast imagers.



قيم البحث

اقرأ أيضاً

The consortium of the Spectro-Polarimetric High-contrast Exoplanet REsearch installed at the Very Large Telescope (SPHERE/VLT) has been operating its guaranteed observation time (260 nights over five years) since February 2015. The main part of this time (200 nights) is dedicated to the detection and characterization of young and giant exoplanets on wide orbits. The large amount of data must be uniformly processed so that accurate and homogeneous measurements of photometry and astrometry can be obtained for any source in the field. To complement the European Southern Observatory pipeline, the SPHERE consortium developed a dedicated piece of software to process the data. First, the software corrects for instrumental artifacts. Then, it uses the speckle calibration tool (SpeCal) to minimize the stellar light halo that prevents us from detecting faint sources like exoplanets or circumstellar disks. SpeCal is meant to extract the astrometry and photometry of detected point-like sources (exoplanets, brown dwarfs, or background sources). SpeCal was intensively tested to ensure the consistency of all reduced images (cADI, Loci, TLoci, PCA, and others) for any SPHERE observing strategy (ADI, SDI, ASDI as well as the accuracy of the astrometry and photometry of detected point-like sources. SpeCal is robust, user friendly, and efficient at detecting and characterizing point-like sources in high contrast images. It is used to process all SPHERE data systematically, and its outputs have been used for most of the SPHERE consortium papers to date. SpeCal is also a useful framework to compare different algorithms using various sets of data (different observing modes and conditions). Finally, our tests show that the extracted astrometry and photometry are accurate and not biased.
For the technology development of the mission EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer) - a 0.7 m telescope equipped with a Phase-Induced Amplitude Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror, c apable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D - we developed two test benches simulating its key components, one in air, the other in vacuum. To achieve this level of contrast, one of the main goals is to remove low-order aberrations, using a Low-Order WaveFront Sensor (LOWFS). We tested this key component, together with the coronagraph and the wavefront control, in air at NASA Ames Research Center and in vacuum at Lockheed Martin. The LOWFS, controlling tip/tilt modes in real time at 1~kHz, allowed us to reduce the disturbances in air to 1e-3 lambda/D rms, letting us achieve a contrast of 2.8e-7 between 1.2 and 2 lambda/D. Tests are currently being performed to achieve the same or a better level of correction in vacuum. With those results, and by comparing them to simulations, we are able to deduce its performances on different coronagraphs - different sizes of telescopes, inner working angles, contrasts, etc. - and therefore study its contribution beyond EXCEDE.
We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-co ntrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at framerates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
Advanced AO systems will likely utilise Pyramid wave-front sensors (PWFS) over the traditional Shack-Hartmann sensor in the quest for increased sensitivity, peak performance and ultimate contrast. Here, we wish to bring knowledge and quantify the PWF S theoretical limits as a means to highlight its properties and use cases. We explore forward models for the PWFS in the spatial-frequency domain for they prove quite useful since a) they emanate directly from physical-optics (Fourier) diffraction theory; b) provide a straightforward path to meaningful error breakdowns, c) allow for reconstruction algorithms with $O (n,log(n))$ complexity for large-scale systems and d) tie in seamlessly with decoupled (distributed) optimal predictive dynamic control for performance and contrast optimisation. All these aspects are dealt with here. We focus on recent analytical PWFS developments and demonstrate the performance using both analytic and end-to-end simulations. We anchor our estimates with observed on-sky contrast on existing systems and then show very good agreement between analytical and Monte-Carlo estimates for the PWFS. For a potential upgrade of existing high-contrast imagers on 10,m-class telescopes with visible or near-infrared PWFS, we show under median conditions at Paranal a contrast improvement (limited by chromatic and scintillation effects) of 2x-5x by replacing the wave-front sensor alone at large separations close to the AO control radius where aliasing dominates, and factors in excess of 10x by coupling distributed control with the PWFS over most of the AO control region, from small separations starting with the Inner Working Angle of typically 1-2 $lambda/D$ to the AO correction edge (here 20 $lambda/D$).
Here we review the current conceptual optical mechanical design of GMagAO-X --the extreme AO (ExAO) system for the Giant Magellan Telescope (GMT). The GMagAO-X tweeter deformable mirror (DM) design is novel in that it uses an optically distributed se t of pupils that allows seven commercially available 3000 actuator BMC DMs to work in parallel to effectively create an ELT-scale ExAO tweeter DM --with all parts commercially available today. The GMagAO-X parallel DM tweeter will have 21,000 actuators to be used at ~2kHz update speeds enabling high-contrast science at ~5 mas separations in the visible and NIR of the spectrum (0.6-1.7 microns). To prove our concept for GMagAO-X several items must be lab tested: the optical/mechanical concept for the parallel DM; phasing of the GMT pupil; and solving the GMTs isolated island effect will all be demonstrated on an optical testbed at the University of Arizona. Here we outline the current design for this GMT High-Contrast Testbed that has been proposed jointly by GMTO and the University of Arizona which leverages the existing, operational, MagAO-X ExAO instrument to verify our approach to phase sensing and AO control for high-contrast GMT NGS science. We will also highlight how GMagAO-X can be mounted on the auxiliary port of the GMT and so remain gravity invariant. Since it is gravity invariant GMagAO-X can utilize a floating optical table to minimize flexure and NCP vibrations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا