ﻻ يوجد ملخص باللغة العربية
We derive number of relations between quadrupole energy, elastic pressure, and shear force distributions in baryons using the large $N_c$ picture of baryons as chiral solitons. The obtained large $N_c$ relations are independent of particular dynamics and should hold in any picture in which the baryon is the chiral soliton. One of remarkable qualitative predictions of the soliton picture is the nullification of the tangential forces acting on the radial area element for any tensor polarisation of the baryon. The derived relations provide a powerful tool to check the hypothesis that the baryons are chiral solitons, say using lattice QCD.
The distributions of pressure and shear forces inside the proton are investigated using lattice Quantum Chromodynamics (LQCD) calculations of the energy momentum tensor, allowing the first model-independent determination of these fundamental aspects
We study the electromagnetic form factors of the lowest-lying singly heavy baryons in a pion mean-field approach, which is also known as the SU(3) chiral quark-soliton model. In the limit of the heavy-quark mass, the dynamics inside a singly heavy ba
In the light of recent experimental progress in determining the pressure and shear distributions in the proton, these quantities are calculated in a model with confined quarks supplemented by the pion field required by chiral symmetry. The incorporat
While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon $(g-2)_mu$ also mixed- and high-ene
We have investigated the electromagnetic decays of the antitriplet and sextet charmed baryon systems with $J^P= frac{1}{2}^+, frac{3}{2}^+$ in the framework of the heavy baryon chiral perturbation theory. We first construct the chiral Lagrangians at