ﻻ يوجد ملخص باللغة العربية
Thin elastic membranes form complex wrinkle patterns when put on substrates of different shapes. Such patterns continue to receive attention across science and engineering. This is due, in part, to the promise of lithography-free micropatterning, but also to the observation that similar patterns arise in biological systems from growth. The challenge is to explain the patterns in any given setup, even when they fail to be robust. Building on the theoretical foundation of [Tobasco, to appear in Arch. Ration. Mech. Anal., arXiv:1906.02153], we derive a complete and simple rule set for wrinkles in the model system of a curved shell on a liquid bath. Our rules apply to shells whose initial Gaussian curvatures are of one sign, such as cutouts of saddles and spheres. They predict the surprising coexistence of orderly wrinkles alongside disordered regions where the response appears stochastic, which we confirm in experiment and simulation. They also unveil the role of the shells medial axis, a distinguished locus of points that we show is a basic driver in pattern selection. Finally, they explain how the sign of the shells initial curvature dictates the presence or lack of disorder. Armed with our simple rules, and the methodology underlying them, one can anticipate the creation of designer wrinkle patterns.
We show that a viscoelastic thin sheet driven out of equilibrium by active structural remodelling develops a rich variety of shapes as a result of a competition between viscous relaxation and activity. In the regime where active processes are faster
Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, whilst measuring the app
Morphogenetic dynamics of tissue sheets require coordinated cell shape changes regulated by global patterning of mechanical forces. Inspired by such biological phenomena, we propose a minimal mechanochemical model based on the notion that cell shape
Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nano-scale tubes, brinicles or chimneys at hydrothermal vents. The analysis of their shapes remains a
We systematically explore the self-assembly of semi-flexible polymers in deformable spherical confinement across a wide regime of chain stiffness, contour lengths and packing fractions by means of coarse-grained molecular dynamics simulations. Compli