ﻻ يوجد ملخص باللغة العربية
The reversible control of a single spin of an atom or a molecule is of great interest in Kondo physics and a potential application in spin based electronics.Here we demonstrate that the Kondo resonance of manganese phthalocyanine molecules on an Au(111) substrate have been reversibly switched off and on via a robust route through attachment and detachment of single hydrogen atom to the magnetic core of the molecule. As further revealed by density functional theory calculations, even though the total number of electrons of the Mn ion remains almost the same in the process, gaining one single hydrogen atom leads to redistribution of charges within 3d orbitals with a reduction of the molecular spin state from S = 3/2 to S = 1 that directly contributes to the Kondo resonance disappearance. This process is reversed by a local voltage pulse or thermal annealing to desorb the hydrogen atom.
Using a hydrogen molecule as a test system we demonstrate how to compute the effective potential according to the formalism of the new density functional theory (DFT), in which the basic variable is the set of spherically averaged densities instead o
In a novel experiment that images the momentum distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas. We demonstrate that the introduction of a heating pulse prior to the m
Stable, single-molecule conducting-bridge configurations are typically identified from peak structures in a conductance histogram. In previous work on Pt with H$_2$ at cryogenic temperatures it has been shown that a peak near 1 $G{_0}$ identifies a s
Transistors, regardless of their size, rely on electrical gates to control the conductance between source and drain contacts. In atomic-scale transistors, this conductance is exquisitely sensitive to single electrons hopping via individual orbitals.
We demonstrate detection of NaRb Feshbach molecules at high magnetic field by combining molecular photodissociation and absorption imaging of the photofragments. The photodissociation process is carried out via a spectroscopically selected hyperfine