ﻻ يوجد ملخص باللغة العربية
We characterize the high-temperature thermodynamics of rotating bosons and fermions in two- (2D) and three-dimensional (3D) isotropic harmonic trapping potentials. We begin by calculating analytically the conventional virial coefficients $b_n$ for all $n$ in the noninteracting case, as functions of the trapping and rotational frequencies. We also report on the virial coefficients for the angular momentum and associated moment of inertia. Using the bn coefficients, we analyze the deconfined limit (in which the angular frequency matches the trapping frequency) and derive explicitly the limiting form of the partition function, showing from the thermodynamic standpoint how both the 2D and 3D cases become effectively homogeneous 2D systems. To tackle the virial coefficients in the presence of weak interactions, we implement a coarse temporal lattice approximation and obtain virial coefficients up to third order.
By generalizing our automated algebra approach from homogeneous space to harmonically trapped systems, we have calculated the fourth- and fifth-order virial coefficients of universal spin-1/2 fermions in the unitary limit, confined in an isotropic ha
The virial expansion characterizes the high-temperature approach to the quantum-classical crossover in any quantum many-body system. Here, we calculate the virial coefficients up to the fifth-order of Fermi gases in 1D, 2D, and 3D, with attractive co
The relationship between 2D $SO(2,1)$ conformal anomalies in nonrelativistic systems and the virial expansion is explored using recently developed path-integral methods. In the process, the Beth-Uhlenbeck formula for the shift of the second virial co
We calculate the finite-temperature density and polarization equations of state of one-dimensional fermions with a zero-range interaction, considering both attractive and repulsive regimes. In the path-integral formulation of the grand-canonical ense
We study the non-equilibrium dynamics of cold atoms held in an optical lattice potential. The expansion of an initially confined atom cloud occurs in two phases: an initial quadratic expansion followed by a ballistic behaviour at long times. Accounti