ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection

106   0   0.0 ( 0 )
 نشر من قبل Hanjie Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating explanations for neural networks has become crucial for their applications in real-world with respect to reliability and trustworthiness. In natural language processing, existing methods usually provide important features which are words or phrases selected from an input text as an explanation, but ignore the interactions between them. It poses challenges for humans to interpret an explanation and connect it to model prediction. In this work, we build hierarchical explanations by detecting feature interactions. Such explanations visualize how words and phrases are combined at different levels of the hierarchy, which can help users understand the decision-making of black-box models. The proposed method is evaluated with three neural text classifiers (LSTM, CNN, and BERT) on two benchmark datasets, via both automatic and human evaluations. Experiments show the effectiveness of the proposed method in providing explanations that are both faithful to models and interpretable to humans.



قيم البحث

اقرأ أيضاً

Corporate mergers and acquisitions (M&A) account for billions of dollars of investment globally every year, and offer an interesting and challenging domain for artificial intelligence. However, in these highly sensitive domains, it is crucial to not only have a highly robust and accurate model, but be able to generate useful explanations to garner a users trust in the automated system. Regrettably, the recent research regarding eXplainable AI (XAI) in financial text classification has received little to no attention, and many current methods for generating textual-based explanations result in highly implausible explanations, which damage a users trust in the system. To address these issues, this paper proposes a novel methodology for producing plausible counterfactual explanations, whilst exploring the regularization benefits of adversarial training on language models in the domain of FinTech. Exhaustive quantitative experiments demonstrate that not only does this approach improve the model accuracy when compared to the current state-of-the-art and human performance, but it also generates counterfactual explanations which are significantly more plausible based on human trials.
170 - Frederick Liu , Besim Avci 2019
Feature attribution methods, proposed recently, help users interpret the predictions of complex models. Our approach integrates feature attributions into the objective function to allow machine learning practitioners to incorporate priors in model bu ilding. To demonstrate the effectiveness our technique, we apply it to two tasks: (1) mitigating unintended bias in text classifiers by neutralizing identity terms; (2) improving classifier performance in a scarce data setting by forcing the model to focus on toxic terms. Our approach adds an L2 distance loss between feature attributions and task-specific prior values to the objective. Our experiments show that i) a classifier trained with our technique reduces undesired model biases without a trade off on the original task; ii) incorporating priors helps model performance in scarce data settings.
Developed so far, multi-document summarization has reached its bottleneck due to the lack of sufficient training data and diverse categories of documents. Text classification just makes up for these deficiencies. In this paper, we propose a novel sum marization system called TCSum, which leverages plentiful text classification data to improve the performance of multi-document summarization. TCSum projects documents onto distributed representations which act as a bridge between text classification and summarization. It also utilizes the classification results to produce summaries of different styles. Extensive experiments on DUC generic multi-document summarization datasets show that, TCSum can achieve the state-of-the-art performance without using any hand-crafted features and has the capability to catch the variations of summary styles with respect to different text categories.
100 - HyeonJun Kim 2020
Feature extraction is an important process of machine learning and deep learning, as the process make algorithms function more efficiently, and also accurate. In natural language processing used in deception detection such as fake news detection, sev eral ways of feature extraction in statistical aspect had been introduced (e.g. N-gram). In this research, it will be shown that by using deep learning algorithms and alphabet frequencies of the original text of a news without any information about the sequence of the alphabet can actually be used to classify fake news and trustworthy ones in high accuracy (85%). As this pre-processing method makes the data notably compact but also include the feature that is needed for the classifier, it seems that alphabet frequencies contains some useful features for understanding complex context or meaning of the original text.
Mining a set of meaningful topics organized into a hierarchy is intuitively appealing since topic correlations are ubiquitous in massive text corpora. To account for potential hierarchical topic structures, hierarchical topic models generalize flat t opic models by incorporating latent topic hierarchies into their generative modeling process. However, due to their purely unsupervised nature, the learned topic hierarchy often deviates from users particular needs or interests. To guide the hierarchical topic discovery process with minimal user supervision, we propose a new task, Hierarchical Topic Mining, which takes a category tree described by category names only, and aims to mine a set of representative terms for each category from a text corpus to help a user comprehend his/her interested topics. We develop a novel joint tree and text embedding method along with a principled optimization procedure that allows simultaneous modeling of the category tree structure and the corpus generative process in the spherical space for effective category-representative term discovery. Our comprehensive experiments show that our model, named JoSH, mines a high-quality set of hierarchical topics with high efficiency and benefits weakly-supervised hierarchical text classification tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا