ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Phonon Coupling and Thermodynamic Behaviour in YCrO3 and LaCrO3: Inelastic Neutron Scattering and Lattice Dynamics

94   0   0.0 ( 0 )
 نشر من قبل R Mittal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report detailed temperature-dependent inelastic neutron scattering and ab-initio lattice dynamics investigation of magnetic perovskites YCrO3 and LaCrO3. The magnetic neutron scattering from the Cr ions exhibits significant changes with temperature and dominates at low momentum transfer regime. Ab-inito calculations performed including magnetic interactions show that the effect of magnetic interaction is very signicant on the low- as well as high-energy phonon modes. We have also shown that the inelastic neutron spectrum of YCrO3 mimics the magnon spectrum from a G-type antiferromagnetic system, which is consistent with previously reported magnetic structure in the compound. The ab-initio lattice dynamics calculations in both the compounds exhibit anisotropic thermal expansion behaviour in the orthorhombic structure and predict negative thermal expansion along the crystallographic a-axis at low temperatures. We identify the anharmonic phonon modes responsible for this anamolous behaviour in LaCrO3 involving low-energy La vibrations and distortions of the CrO6 octahedra.



قيم البحث

اقرأ أيضاً

Sodium niobate (NaNbO3) exhibits most complex sequence of structural phase transitions in perovskite family and therefore provides as excellent model system for understanding the mechanism of structural phase transitions. We report temperature depend ence of inelastic neutron scattering measurements of phonon densities of states in sodium niobate. The measurements are carried out in various crystallographic phases of this material at various temperatures from 300 K to 1048 K. The phonon spectra exhibit peaks centered around 19, 37, 51, 70 and 105 meV. Interestingly, the peak around 70 meV shifts significantly towards lower energy with increasing temperature, while the other peaks do not exhibit an appreciable change. The phonon spectra at 783 K show prominent change and become more diffusive as compared to those at 303 K. In order to better analyze these features, we have performed first principles lattice dynamics calculations based on the density functional theory. The computed phonon density of states is found to be in good agreement with the experimental data. Based on our calculation we are able to assign the characteristic Raman modes in the antiferroelectric phase to the A1g symmetry, which are due to the folding of the T (w=95 cm-1) and delta(w=129 cm-1) points of the cubic Brillouin zone.
We report measurements of the temperature dependence of phonon densities of states in K0.8Fe1.6Se2 using inelastic neutron scattering technique. While cooling down to 150 K, a phonon peak splitting around 25 meV is observed and a new peak appears at 31 meV. The measurements support the recent Raman and infra-red measurements indicating a lowering of symmetry of K0.8Fe1.6Se2 upon cooling below 250 K. Ab-initio phonon calculations have been carried out for K0.8Fe1.6Se2 and KFe2Se2. The comparison of the phonon spectra as obtained from the magnetic as well as non magnetic calculations show pronounced differences. We show that in the two calculations the energy range of the vibrational contribution from both Fe and Se are quite different. We conclude that Fe magnetism is correlated to the phonon dynamics and it plays an important role in stabilizing the structure of K0.8Fe1.6Se2 as well as that of KFe2Se2. The calculations highlight the presence of low energy librational modes in K0.8Fe1.6Se2 as compared to KFe2Se2.
Cyanide based framework compounds are known to show large negative thermal expansion behaviour. Here we report the phonon and anomalous lattice behavior of two metal cyanide framework compounds i.e. KMnAg3(CN)6 and KNiAu3(CN)6. We have studied the ro le of van der Waals dispersion and magnetic interactions on structural stability of these compounds. The behavior of these compounds under isotropic compression shows the presence of negative linear compressibility. The calculated phonon spectra, validated by inelastic neutron scattering measurements and elastic constants are used to study the negative thermal expansion behavior which is found to arise from low energy phonon modes involving the folding of A-NC-B-CN-A linkage about B atoms.
586 - M. K. Gupta , R. Mittal , M. Zbiri 2014
We have carried out an extensive phonon study on multiferroic GaFeO3 to elucidate its dynamical behavior. Inelastic neutron scattering measurements are performed over a wide temperature range, 150 to 1198 K. First principles lattice dynamical calcula tions are done for the sake of the analysis and interpretation of the observations. The comparison of the phonon spectra from magnetic and non-magnetic calculations highlights pronounced differences. The energy range of the vibrational atomistic contributions of the Fe and O ions are found to differ significantly in the two calculation types. Therefore, magnetism induced by the active spin degrees of freedom of Fe cations plays a key role in stabilizing the structure and dynamics of GaFeO3. Moreover, the computed enthalpy in various phases of GaFeO3 is used to gain deeper insights into the high pressure phase stability of this material. Further, the volume dependence of the phonon spectra is used to determine its thermal expansion behavior.
98 - J.T. Haraldsen 2016
This study examines the increasing complexity in the magnetic properties of small $n$ = 3, 4, 5, 6 spin-1/2 quantum rings. Using an exact diagonalization of the isotropic Heisenberg Hamiltonian with nearest and next-nearest neighbor interactions, the energy eigenstates, magnetic specific heat capacity, magnetic susceptibility, and inelastic neutron scattering structure factors are determined for variable next-nearest neighbor interactions. Here, it is shown that the presence of a complex spin-mixing, multiple ground states, and non-zero ground states greatly complicate the spin Hamiltonian. Overall, the energy eigenstates and structure factor intensities are presented in closed form, while the thermodynamic properties detail the effect of a crossing interaction in the rings. The goal of this work is to provide insight into the evolution of the magnetic properties and spin excitations within these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا