ترغب بنشر مسار تعليمي؟ اضغط هنا

Reversible adiabatic temperature change in the shape memory Heusler alloy Ni2.2Mn0.8Ga: An effect of structural compatibility

70   0   0.0 ( 0 )
 نشر من قبل Michael Nicklas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The large magnetocaloric effect (MCE) observed in Ni-Mn based shape-memory Heusler alloys put them forward to use in magnetic refrigeration technology. It is associated with a first-order magnetostructural (martensitic) phase transition. We conducted a comprehensive study of the MCE for the off-stoichiometric Heusler alloy Ni$_{2.2}$Mn$_{0.8}$Ga in the vicinity of its first-order magnetostructural phase transition. We found a reversible MCE under repeated magnetic field cycles. The reversible behavior can be attributed to the small thermal hysteresis of the martensitic phase transition. Based on the analysis of our detailed temperature dependent X-ray diffraction data, we demonstrate the geometric compatibility of the cubic austenite and tetragonal martensite phases. This finding directly relates the reversible MCE behavior to an improved geometric compatibility condition between cubic austenite and tetragonal martensite phases. The approach will help to design shape-memory Heusler alloys with a large reversible MCE taking advantage of the first-order martensitic phase transition.

قيم البحث

اقرأ أيضاً

The origin of incommensurate structural modulation in Ni-Mn based Heusler type magnetic shape memory alloys (MSMAs) is still an unresolved issue inspite of intense focus on this due to its role in the magnetic field induced ultra-high strains. In the archetypal MSMA Ni2MnGa, the observation of non-uniform displacement of atoms from their mean positions in the modulated martensite phase, premartensite phase and charge density wave as well as the presence of phason broadening of satellite peaks have been taken in support of the electronic instability model linked with a soft acoustic phonon. We present here results of a combined high resolution synchrotron x-ray powder diffraction (SXRPD) and neutron powder diffraction (NPD) study on Ni2Mn1.4In0.6 using (3+1)D superspace group approach, which reveal not only uniform atomic displacements in the modulated structure of the martensite phase with physically acceptable ordered magnetic moments in the antiferromagnetic phase at low temperatures but also the absence of any premartensite phase and phason broadening of the satellite peaks. Our HRTEM studies and first principles calculations of the ground state also support uniform atomic displacements predicted by powder diffraction studies. All these observations suggest that the structural modulation in the martensite phase of Ni2Mn1.4In0.6 MSMA can be explained in terms of the adaptive phase model. The present study underlines the importance of superspace group analysis using complimentary SXRPD and NPD in understanding the physics of the origin of modulation as well as the magnetic and the modulated ground states of the Heusler type MSMAs. Our work also highlights the fact that the mechanism responsible for the origin of modulated structure in different Ni-Mn based MSMAs may not be universal and it must be investigated thoroughly in different alloy compositions.
We report an improved reversibility of magnetostriction and inverse magnetocaloric effect (MCE) for the magnetic shape-memory Heusler alloy Ni$_{1.8}$Mn$_{1.8}$In$_{0.4}$. We show that the magnetostriction and MCE crucially depends on the geometrical compatibility of the austenite and martensite phases. Detailed information on the compatibility of both phases has been obtained from the transformation matrix calculated from x-ray diffraction data. The uniqueness of the lattice parameters results in an improved reversibility of the magnetostriction and the MCE. In the thermal hysteresis region of the martensitic transformation, the maximum relative length change is 0.3% and the adiabatic temperature change $Delta T_{ad}approx -10$ K in pulsed magnetic fields. Our results reveal that the approach of geometric compatibility will allow one to design materials with reversible magnetostriction and reversible inverse MCE at a first-order magnetostructural phase transition in shape-memory Heusler alloys.
Ti50 Pd50-xCrx is a high temperature shape memory alloy with a martensitic transformation temperature strongly dependent on the Cr composition. Prior to the transformation a premartensitic phase is present with an incommensurate modulated cubic latti ce with wave vector of q0=(0.22, 0.22, 0). The temperature dependence of the diffuse scattering in the cubic phase is measured as a function temperature for x=6.5, 8.5, and 10 at. %. The lattice dynamics has been studied and reveals anomalous temperature and q-dependence of the [110]-TA2 transverse phonon branch. The phonon linewidth is broad over the entire Brillouin zone and increases with decreasing temperature, contrary to the behavior expected for anharmonicity. No anomaly is observed at q0. The results are compared with first principles calculation of the phonon structure.
65 - S. M. Shapiro , G. Xu , G. Gu 2006
Nb-Ru is a high temperature shape memory alloy that undergoes a Martensitic transformation from a parent cubic b-phase into a tetragonal b phase at TM 900 C. Measurements of the phonon dispersion curves show that the [110]-TA2 phonon branch, correspo nding in the q=0 limit to the elastic constant C=1/2(C11-C12) has an anomalous temperature dependence. Nearly the entire branch softens with decreasing temperature as TM is approached. The temperature dependence of the low-q phonon energies suggests that the elastic constants would approach 0 as T approaches TM, indicating a second order transition. No additional lattice modulation is observed in the cubic phase.
80 - L. Pareti 2002
In this paper we report the existence of a giant magnetocaloric effect (MCE) in a intermetallic compound non-containing rare-earth. This effect is associated with the concomitant occurrence of a structural and a magnetic transition. The result has be en compared with that obtained in a parent compound in which magnetic and structural transition occur separately.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا