ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparative study between discrete and continuum models for the evolution of competing phenotype-structured cell populations in dynamical environments

237   0   0.0 ( 0 )
 نشر من قبل Aleksandra Arda\\v{s}eva
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deterministic continuum models formulated in terms of non-local partial differential equations for the evolutionary dynamics of populations structured by phenotypic traits have been used recently to address open questions concerning the adaptation of asexual species to periodically fluctuating environmental conditions. These deterministic continuum models are usually defined on the basis of population-scale phenomenological assumptions and cannot capture adaptive phenomena that are driven by stochastic variability in the evolutionary paths of single individuals. In this paper, we develop a stochastic individual-based model for the coevolution between two competing phenotype-structured cell populations that are exposed to time-varying nutrient levels and undergo spontaneous, heritable phenotypic variations with different probabilities. The evolution of every cell is described by a set of rules that result in a discrete-time branching random walk on the space of phenotypic states. We formally show that the deterministic continuum counterpart of this model comprises a system of non-local partial differential equations for the cell population density functions coupled with an ordinary differential equation for the nutrient concentration. We compare the individual-based model and its continuum analogue, focussing on scenarios whereby the predictions of the two models differ. Our results clarify the conditions under which significant differences between the two models can emerge due to stochastic effects associated with small population levels. These differences arise in the presence of low probabilities of phenotypic variation, and become more apparent when the two populations are characterised by less fit initial mean phenotypes and smaller initial levels of phenotypic heterogeneity.



قيم البحث

اقرأ أيضاً

Living species, ranging from bacteria to animals, exist in environmental conditions that exhibit spatial and temporal heterogeneity which requires them to adapt. Risk-spreading through spontaneous phenotypic variations is a known concept in ecology, which is used to explain how species may survive when faced with the evolutionary risks associated with temporally varying environments. In order to support a deeper understanding of the adaptive role of spontaneous phenotypic variations in fluctuating environments, we consider a system of non-local partial differential equations modelling the evolutionary dynamics of two competing phenotype-structured populations in the presence of periodically oscillating nutrient levels. The two populations undergo spontaneous phenotypic variations at different rates. The phenotypic state of each individual is represented by a continuous variable, and the phenotypic landscape of the populations evolves in time due to variations in the nutrient level. Exploiting the analytical tractability of our model, we study the long-time behaviour of the solutions to obtain a detailed mathematical depiction of evolutionary dynamics. The results suggest that when nutrient levels undergo small and slow oscillations, it is evolutionarily more convenient to rarely undergo spontaneous phenotypic variations. Conversely, under relatively large and fast periodic oscillations in the nutrient levels, which bring about alternating cycles of starvation and nutrient abundance, higher rates of spontaneous phenotypic variations confer a competitive advantage. We discuss the implications of our results in the context of cancer metabolism.
215 - Mingtao Xia , Tom Chou 2021
We derive the full kinetic equations describing the evolution of the probability density distribution for a structured population such as cells distributed according to their ages and sizes. The kinetic equations for such a sizer-timer model incorpor ates both demographic and individual cell growth rate stochasticities. Averages taken over the densities obeying the kinetic equations can be used to generate a second order PDE that incorporates the growth rate stochasticity. On the other hand, marginalizing over the densities yields a modified birth-death process that shows how age and size influence demographic stochasticity. Our kinetic framework is thus a more complete model that subsumes both the deterministic PDE and birth-death master equation representations for structured populations.
Cancer cells are known to modify their micro-environment such that it can sustain a larger population, or, in ecological terms, they construct a niche which increases the carrying capacity of the population. It has however been argued that niche cons truction, which benefits all cells in the tumour, would be selected against since cheaters could reap the benefits without paying the cost. We have investigated the impact of niche specificity on tumour evolution using an individual based model of breast tumour growth, in which the carrying capacity of each cell consists of two components: an intrinsic, subclone-specific part and a contribution from all neighbouring cells. Analysis of the model shows that the ability of a mutant to invade a resident population depends strongly on the specificity. When specificity is low selection is mostly on growth rate, while high specificity shifts selection towards increased carrying capacity. Further, we show that the long-term evolution of the system can be predicted using adaptive dynamics. By comparing the results from a spatially structured vs. well-mixed population we show that spatial structure restores selection for carrying capacity even at zero specificity, which a poses solution to the niche construction dilemma. Lastly, we show that an expanding population exhibits spatially variable selection pressure, where cells at the leading edge exhibit higher growth rate and lower carrying capacity than those at the centre of the tumour.
How should dispersal strategies be chosen to increase the likelihood of survival of a species? We obtain the answer for the spatially extend
Microbial populations often have complex spatial structures, with homogeneous competition holding only at a local scale. Population structure can strongly impact evolution, in particular by affecting the fixation probability of mutants. Here, we prop ose a model of structured microbial populations on graphs, where each node of the graph contains a well-mixed deme whose size can fluctuate, and where migrations are independent from birth and death events. We study analytically and numerically the mutant fixation probabilities in different structures, in the rare migration regime. In particular, we demonstrate that the star graph continuously transitions between amplifying and suppressing natural selection as migration rate asymmetry is varied. This elucidates the apparent paradox in existing constant-size models on graphs, where the star is an amplifier or a suppressor depending on the details of the dynamics or update rule chosen, e.g. whether each birth event precedes or follows a death event. The celebrated amplification property of the star graph for large populations is preserved in our model, for specific migration asymmetry. We further demonstrate a general mapping between our model and constant-size models on graphs, under a constraint on migration rates, which directly stems from assuming constant size. By lifting this constraint, our model reconciles and generalizes previous results, showing that migration rate asymmetry is key to determining whether a given population structure amplifies or suppresses natural selection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا