ﻻ يوجد ملخص باللغة العربية
The PANDA experiment will use cooled antiproton beams with high intensity stored1 in the High Energy Storage Ring at FAIR. Reactions on a fixed target producing charmed hadrons will shed light on the strong QCD. Three ring imaging Cherenkov counters are used for charged particle identification. The status of the Barrel DIRC (Detection of Internally Reflected Cherenkov light) is described. Its design is robust and its performance validated in experiments with test beams. The PANDA Barrel DIRC has entered the construction phase and will be installed in 2023/2024.
The PANDA experiment is one of the four large experiments being built at FAIR in Darmstadt. It will use a cooled antiproton beam on a fixed target within the momentum range of 1.5 to 15 GeV/c to address questions of strong QCD, where the coupling con
The Barrel DIRC of the PANDA experiment at FAIR will cleanly separate pions from kaons for the physics program of PANDA. Innovative solutions for key components of the detector sitting in the strong magnetic field of the compact PANDA target spectrom
The innovative Barrel DIRC (Detection of Internally Reflected Cherenkov light) counter will provide hadronic particle identification (PID) in the central region of the PANDA experiment at the new Facility for Antiproton and Ion Research (FAIR), Darms
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Det
PANDA (anti-Proton ANnihiliation at DArmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental