ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental Limits of Distributed Encoding

61   0   0.0 ( 0 )
 نشر من قبل Nastaran Abadi Khooshemehr
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In general coding theory, we often assume that error is observed in transferring or storing encoded symbols, while the process of encoding itself is error-free. Motivated by recent applications of coding theory, in this paper, we consider the case where the process of encoding is distributed and prone to error. We introduce the problem of distributed encoding, comprising of $Kinmathbb{N}$ isolated source nodes and $Ninmathbb{N}$ encoding nodes. Each source node has one symbol from a finite field and sends it to all encoding nodes. Each encoding node stores an encoded symbol, as a function of the received symbols. However, some of the source nodes are controlled by the adversary and may send different symbols to different encoding nodes. Depending on the number of adversarial nodes, denoted by $betainmathbb{N}$, and the number of symbols that each one generates, denoted by $vinmathbb{N}$, the process of decoding from the encoded symbols could be impossible. Assume that a decoder connects to an arbitrary subset of $t inmathbb{N}$ encoding nodes and wants to decode the symbols of the honest nodes correctly, without necessarily identifying the sets of honest and adversarial nodes. In this paper, we study $t^*inmathbb{N}$, the minimum of $t$, which is a function of $K$, $N$, $beta$, and $v$. We show that when the encoding nodes use linear coding, $t^*_{textrm{linear}}=K+2beta(v-1)$, if $Nge K+2beta(v-1)$, and $t^*_{textrm{linear}}=N$, if $Nle K+2beta(v-1)$. In order to achieve $t^*_{textrm{linear}}$, we use random linear coding and show that in any feasible solution that the decoder finds, the messages of the honest nodes are decoded correctly. For the converse of the fundamental limit, we show that when the adversary behaves in a particular way, it can always confuse the decoder between two feasible solutions that differ in the message of at least one honest node.



قيم البحث

اقرأ أيضاً

The rate region of the task-encoding problem for two correlated sources is characterized using a novel parametric family of dependence measures. The converse uses a new expression for the $rho$-th moment of the list size, which is derived using the relative $alpha$-entropy.
We consider the coded caching problem with an additional privacy constraint that a user should not get any information about the demands of the other users. We first show that a demand-private scheme for $N$ files and $K$ users can be obtained from a non-private scheme that serves only a subset of the demands for the $N$ files and $NK$ users problem. We further use this fact to construct a demand-private scheme for $N$ files and $K$ users from a particular known non-private scheme for $N$ files and $NK-K+1$ users. It is then demonstrated that, the memory-rate pair $(M,min {N,K}(1-M/N))$, which is achievable for non-private schemes with uncoded transmissions, is also achievable under demand privacy. We further propose a scheme that improves on these ideas by removing some redundant transmissions. The memory-rate trade-off achieved using our schemes is shown to be within a multiplicative factor of 3 from the optimal when $K < N$ and of 8 when $Nleq K$. Finally, we give the exact memory-rate trade-off for demand-private coded caching problems with $Ngeq K=2$.
This work investigates the problem of demand privacy against colluding users for shared-link coded caching systems, where no subset of users can learn any information about the demands of the remaining users. The notion of privacy used here is strong er than similar notions adopted in past work and is motivated by the practical need to insure privacy regardless of the file distribution. Two scenarios are considered: Single File Retrieval (SFR) and Linear Function Retrieval (LFR), where in the latter case each user demands an arbitrary linear combination of the files at the server. The main contributions of this paper are a novel achievable scheme for LFR, referred as privacy key scheme, and a new information theoretic converse bound for SFR. Clearly, being SFR a special case of LFR, an achievable scheme for LFR works for SFR as well, and a converse for SFR is a valid converse for LFR as well. By comparing the performance of the achievable scheme with the converse bound derived in this paper (for the small cache size regime) and existing converse bounds without privacy constraints (in the remaining memory regime), the communication load of the privacy key scheme turns out to be optimal to within a constant multiplicative gap in all parameter regimes. Numerical results show that the new privacy key scheme outperforms in some regime known schemes based on the idea of virtual users, which also satisfy the stronger notion of user privacy against colluding users adopted here. Moreover, the privacy key scheme enjoys much lower subpacketization than known schemes based on virtual users.
Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) f or suboptimal receivers, such as the linear minimum mean square error (MMSE) detectors, are derived. The approach is general and optionally allows even for statistics obtained by under-sampling the received signal. All performance measures are given as a function of the chip waveform and the delay distribution of the users in the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms with bandwidth greater than the Nyquist bandwidth, e.g., positive roll-off factors. For example, with the pulse shaping demanded in the UMTS standard, user synchronization reduces spectral efficiency up to 12% at 10 dB normalized signal-to-noise ratio. The benefits of asynchronism stem from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if the users are de-synchronized on the chip-level. The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the user domain and in the frequency domain such that the concept of the effective interference spectral density arises. This generalizes and refines Tse and Hanlys concept of effective interference. In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and guidelines for the design of low complexity multistage detectors with universal weights are provided.
The fundamental problem considered in this paper is What is the textit{energy} consumed for the implementation of a emph{compressive sensing} decoding algorithm on a circuit?. Using the information-friction framework, we examine the smallest amount o f textit{bit-meters} as a measure for the energy consumed by a circuit. We derive a fundamental lower bound for the implementation of compressive sensing decoding algorithms on a circuit. In the setting where the number of measurements scales linearly with the sparsity and the sparsity is sub-linear with the length of the signal, we show that the textit{bit-meters} consumption for these algorithms is order-tight, i.e., it matches the lower bound asymptotically up to a constant factor. Our implementations yield interesting insights into design of energy-efficient circuits that are not captured by the notion of computational efficiency alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا