ﻻ يوجد ملخص باللغة العربية
We consider a design problem where experimental conditions (design points $X_i$) are presented in the form of a sequence of i.i.d. random variables, generated with an unknown probability measure $mu$, and only a given proportion $alphain(0,1)$ can be selected. The objective is to select good candidates $X_i$ on the fly and maximize a concave function $Phi$ of the corresponding information matrix. The optimal solution corresponds to the construction of an optimal bounded design measure $xi_alpha^*leq mu/alpha$, with the difficulty that $mu$ is unknown and $xi_alpha^*$ must be constructed online. The construction proposed relies on the definition of a threshold $tau$ on the directional derivative of $Phi$ at the current information matrix, the value of $tau$ being fixed by a certain quantile of the distribution of this directional derivative. Combination with recursive quantile estimation yields a nonlinear two-time-scale stochastic approximation method. It can be applied to very long design sequences since only the current information matrix and estimated quantile need to be stored. Convergence to an optimum design is proved. Various illustrative examples are presented.
To fast approximate maximum likelihood estimators with massive data, this paper studies the Optimal Subsampling Method under the A-optimality Criterion (OSMAC) for generalized linear models. The consistency and asymptotic normality of the estimator f
The use of heuristics to assess the convergence and compress the output of Markov chain Monte Carlo can be sub-optimal in terms of the empirical approximations that are produced. Typically a number of the initial states are attributed to burn in and
Sequential Monte Carlo (SMC), also known as particle filters, has been widely accepted as a powerful computational tool for making inference with dynamical systems. A key step in SMC is resampling, which plays the role of steering the algorithm towar
We introduce a new method for high-dimensional, online changepoint detection in settings where a $p$-variate Gaussian data stream may undergo a change in mean. The procedure works by performing likelihood ratio tests against simple alternatives of di
Nonuniform subsampling methods are effective to reduce computational burden and maintain estimation efficiency for massive data. Existing methods mostly focus on subsampling with replacement due to its high computational efficiency. If the data volum