ﻻ يوجد ملخص باللغة العربية
In this paper, we study nonlocal random walk strategies generated with the fractional Laplacian matrix of directed networks. We present a general approach to analyzing these strategies by defining the dynamics as a discrete-time Markovian process with transition probabilities between nodes expressed in terms of powers of the Laplacian matrix. We analyze the elements of the transition matrices and their respective eigenvalues and eigenvectors, the mean first passage times and global times to characterize the random walk strategies. We apply this approach to the study of particular local and nonlocal ergodic random walks on different directed networks; we explore circulant networks, the biased transport on rings and the dynamics on random networks. We study the efficiency of a fractional random walker with bias on these structures. Effects of ergodicity loss which occur when a directed network is not any more strongly connected are also discussed.
Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of compl
We develop rigorous, analytic techniques to study the behaviour of biased random walks on combs. This enables us to calculate exactly the spectral dimension of random comb ensembles for any bias scenario in the teeth or spine. Two specific examples o
We present an analytical method for computing the mean cover time of a random walk process on arbitrary, complex networks. The cover time is defined as the time a random walker requires to visit every node in the network at least once. This quantity
We analyze a random walk strategy on undirected regular networks involving power matrix functions of the type $L^{frac{alpha}{2}}$ where $L$ indicates a `simple Laplacian matrix. We refer such walks to as `Fractional Random Walks with admissible inte
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-cal