ﻻ يوجد ملخص باللغة العربية
The gauge dependence of effective average action in the functional renormalization group is studied. The effective average action is considered as non-perturbative solution to the flow equation which is the basic equation of the method. It is proven that at any scale of IR cutoff the effective average action depends on gauges making impossible physical interpretation of all obtained results in this method.
We study the gauge dependence of the effective average action Gamma_k and Newtonian gravitational constant using the RG equation for Gamma_k. Then we truncate the space of action functionals to get a solution of this equation. We solve the truncated
Using the background field method for the functional renormalization group approach in the case of a generic gauge theory, we study the background field symmetry and gauge dependence of the background average effective action, when the regulator acti
We explicitly demonstrate that the perturbative holomorphic contribution to the off-shell effective action of N=2 U(1) gauge supermultiplet is an entire effect of the minimal coupling to a hypermultiplet with the mass generated by a central charge in
We study the gauge transformation of the recently computed one-loop four-point function of {cal N}=4 supersymmetric Yang-Mills theory with gauge group U(N). The contributions from nonplanar diagrams are not gauge invariant. We compute their gauge var
In the presence of a confining flux tube between a pair of sources the vacuum is no longer Poincare invariant. This symmetry is nonlinearly realized in the effective string action. A general method for finding a large class of Lorentz invariant contr