ﻻ يوجد ملخص باللغة العربية
TaIrTe$_4$ is an example of a candidate Weyl type-II semimetal with a minimal possible number of Weyl nodes. Four nodes are reported to exist a single plane in $k$-space. The existence of a conical dispersion linked to Weyl nodes has yet to be shown experimentally. Here we use optical spectroscopy as a probe of the band structure on a low-energy scale. Studying optical conductivity allows us to probe intraband and interband transitions with zero momentum. In TaIrTe$_4$, we observe a narrow Drude contribution and an interband conductivity that may be consistent with a tilted linear band dispersion up to 40~meV. The interband conductivity allows us to establish the effective parameters of the conical dispersion; effective velocity $v=1.1cdot 10^{4}$~m/s and tilt $gamma=0.37$. The transport data, Seebeck and Hall coefficients, are qualitatively consistent with conical features in the band structure. Quantitative disagreement may be linked to the multiband nature of TaIrTe$_4$.
The layered ternary compound TaIrTe$_4$ has been predicted to be a type-II Weyl semimetal with only four Weyl points just above the Fermi energy. Performing magnetotransport measurements on this material we find that the resistivity does not saturate
Topological quantum materials, including topological insulators and superconductors, Dirac semimetals and Weyl semimetals, have attracted much attention recently for their unique electronic structure, spin texture and physical properties. Very lately
Topological materials with extremely large magnetoresistance exhibit a prognostic feature of resistivity turn-on behaviour. This occurs when the temperature dependence of resistivity changes from metallic to semiconducting characteristics on applicat
Molybdenum ditelluride, MoTe2, is a versatile material where the topological phase can be readily tuned by manipulating the associated structural phase transition. The fine details of the band structure of MoTe2, key to understanding its topological
Recent breakthrough in search for the analogs of fundamental particles in condensed matter systems lead to experimental realizations of 3D Dirac and Weyl semimetals. Weyl state can be hosted either by non-centrosymmetric or magnetic materials and can