ﻻ يوجد ملخص باللغة العربية
Thermal infrared measurements of near-Earth objects provide critical data for constraining their physical properties such as size. The NEOWISE mission has been conducting an all-sky infrared survey to gather such data and improve our understanding of this population. While automated routines are employed to identify the majority of moving objects detected by NEOWISE, a subset of objects will have dynamical properties that fall outside the window detectable to these routines. Using the population of known near-Earth objects, we have conducted a manual search for detections of these objects that were previously unreported. We report 303 new epochs of observations for 299 unique near-Earth objects of which 239 have no previous physical property characterization from the NEOWISE Reactivation mission. As these objects are drawn from a list with inherent optical selection biases, the distribution of measured albedos is skewed to higher values than is seen for the diameter-selected population detected by the automated routines. These results demonstrate the importance and benefit of periodic searches of the archival NEOWISE data.
Automated asteroid detection routines set requirements on the number of detections, signal-to-noise ratio, and the linearity of the expected motion in order to balance completeness, reliability, and time delay after data acquisition when identifying
The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in Dec 2013. Using the observations collected
Enhancements to the science data processing pipeline of NASAs Wide-field Infrared Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of $>$158,000 minor planets in four infrared wavelengths during the fully cryogenic po
Variability in young stellar objects (YSOs) can be caused by various time-dependent phenomena associated with star formation, including accretion rates, geometric changes in the circumstellar disks, stochastic hydromagnetic interactions between stell
The Taiwanese-American Occultation Survey (TAOS) aims to detect serendipitous occultations of stars by small (about 1 km diameter) objects in the Kuiper Belt and beyond. Such events are very rare (<0.001 events per star per year) and short in duratio