ﻻ يوجد ملخص باللغة العربية
Computational stereo has reached a high level of accuracy, but degrades in the presence of occlusions, repeated textures, and correspondence errors along edges. We present a novel approach based on neural networks for depth estimation that combines stereo from dual cameras with stereo from a dual-pixel sensor, which is increasingly common on consumer cameras. Our network uses a novel architecture to fuse these two sources of information and can overcome the above-mentioned limitations of pure binocular stereo matching. Our method provides a dense depth map with sharp edges, which is crucial for computational photography applications like synthetic shallow-depth-of-field or 3D Photos. Additionally, we avoid the inherent ambiguity due to the aperture problem in stereo cameras by designing the stereo baseline to be orthogonal to the dual-pixel baseline. We present experiments and comparisons with state-of-the-art approaches to show that our method offers a substantial improvement over previous works.
Deep learning techniques have enabled rapid progress in monocular depth estimation, but their quality is limited by the ill-posed nature of the problem and the scarcity of high quality datasets. We estimate depth from a single camera by leveraging th
Recently, coded masks have been used to demonstrate a thin form-factor lensless camera, FlatCam, in which a mask is placed immediately on top of a bare image sensor. In this paper, we present an imaging model and algorithm to jointly estimate depth a
This paper tackles the unsupervised depth estimation task in indoor environments. The task is extremely challenging because of the vast areas of non-texture regions in these scenes. These areas could overwhelm the optimization process in the commonly
With the developments of dual-lens camera modules,depth information representing the third dimension of thecaptured scenes becomes available for smartphones. It isestimated by stereo matching algorithms, taking as input thetwo views captured by dual-
Static gesture recognition is an effective non-verbal communication channel between a user and their devices; however many modern methods are sensitive to the relative pose of the users hands with respect to the capture device, as parts of the gestur