ﻻ يوجد ملخص باللغة العربية
A canonical wireless communication system consists of a transmitter and a receiver. The information bit stream is transmitted after coding, modulation, and pulse shaping. Due to the effects of radio frequency (RF) impairments, channel fading, noise and interference, the signal arriving at the receiver will be distorted. The receiver needs to recover the original information from the distorted signal. In this paper, we propose a new receiver model, namely DeepReceiver, that uses a deep neural network to replace the traditional receivers entire information recovery process. We design a one-dimensional convolution DenseNet (1D-Conv-DenseNet) structure, in which global pooling is used to improve the adaptability of the network to different input signal lengths. Multiple binary classifiers are used at the final classification layer to achieve multi-bit information stream recovery. We also exploit the DeepReceiver for unified blind reception of multiple modulation and coding schemes (MCSs) by including signal samples of corresponding MCSs in the training set. Simulation results show that the proposed DeepReceiver performs better than traditional step-by-step serial hard decision receiver in terms of bit error rate under the influence of various factors such as noise, RF impairments, multipath fading, cochannel interference, dynamic environment, and unified reception of multiple MCSs.
In this paper, we introduce an intelligent reflecting surface (IRS) to provide a programmable wireless environment for physical layer security. By adjusting the reflecting coefficients, the IRS can change the attenuation and scattering of the inciden
As a subfield of network coding, physical-layer network coding (PNC) can effectively enhance the throughput of wireless networks by mapping superimposed signals at receiver to other forms of user messages. Over the past twenty years, PNC has received
We consider adversarial machine learning based attacks on power allocation where the base station (BS) allocates its transmit power to multiple orthogonal subcarriers by using a deep neural network (DNN) to serve multiple user equipments (UEs). The D
Intelligent communication is gradually considered as the mainstream direction in future wireless communications. As a major branch of machine learning, deep learning (DL) has been applied in physical layer communications and has demonstrated an impre
In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the networks sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to