ﻻ يوجد ملخص باللغة العربية
Optimal caching of files in a content distribution network (CDN) is a problem of fundamental and growing commercial interest. Although many different caching algorithms are in use today, the fundamental performance limits of network caching algorithms from an online learning point-of-view remain poorly understood to date. In this paper, we resolve this question in the following two settings: (1) a single user connected to a single cache, and (2) a set of users and a set of caches interconnected through a bipartite network. Recently, an online gradient-based coded caching policy was shown to enjoy sub-linear regret. However, due to the lack of known regret lower bounds, the question of the optimality of the proposed policy was left open. In this paper, we settle this question by deriving tight non-asymptotic regret lower bounds in both of the above settings. In addition to that, we propose a new Follow-the-Perturbed-Leader-based uncoded caching policy with near-optimal regret. Technically, the lower-bounds are obtained by relating the online caching problem to the classic probabilistic paradigm of balls-into-bins. Our proofs make extensive use of a new result on the expected load in the most populated half of the bins, which might also be of independent interest. We evaluate the performance of the caching policies by experimenting with the popular MovieLens dataset and conclude the paper with design recommendations and a list of open problems.
We study the multi-user scheduling problem for minimizing the Age of Information (AoI) in cellular wireless networks under stationary and non-stationary regimes. We derive fundamental lower bounds for the scheduling problem and design efficient onlin
In a Fog Radio Access Network (F-RAN) architecture, edge nodes (ENs), such as base stations, are equipped with limited-capacity caches, as well as with fronthaul links that can support given transmission rates from a cloud processor. Existing informa
We consider the coded caching problem with an additional privacy constraint that a user should not get any information about the demands of the other users. We first show that a demand-private scheme for $N$ files and $K$ users can be obtained from a
This work investigates the problem of demand privacy against colluding users for shared-link coded caching systems, where no subset of users can learn any information about the demands of the remaining users. The notion of privacy used here is strong
The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems. Early works on ISAC have been focused on the design, analy