ترغب بنشر مسار تعليمي؟ اضغط هنا

BANet: Bidirectional Aggregation Network with Occlusion Handling for Panoptic Segmentation

201   0   0.0 ( 0 )
 نشر من قبل Xi Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Panoptic segmentation aims to perform instance segmentation for foreground instances and semantic segmentation for background stuff simultaneously. The typical top-down pipeline concentrates on two key issues: 1) how to effectively model the intrinsic interaction between semantic segmentation and instance segmentation, and 2) how to properly handle occlusion for panoptic segmentation. Intuitively, the complementarity between semantic segmentation and instance segmentation can be leveraged to improve the performance. Besides, we notice that using detection/mask scores is insufficient for resolving the occlusion problem. Motivated by these observations, we propose a novel deep panoptic segmentation scheme based on a bidirectional learning pipeline. Moreover, we introduce a plug-and-play occlusion handling algorithm to deal with the occlusion between different object instances. The experimental results on COCO panoptic benchmark validate the effectiveness of our proposed method. Codes will be released soon at https://github.com/Mooonside/BANet.



قيم البحث

اقرأ أيضاً

Recent researches on panoptic segmentation resort to a single end-to-end network to combine the tasks of instance segmentation and semantic segmentation. However, prior models only unified the two related tasks at the architectural level via a multi- branch scheme or revealed the underlying correlation between them by unidirectional feature fusion, which disregards the explicit semantic and co-occurrence relations among objects and background. Inspired by the fact that context information is critical to recognize and localize the objects, and inclusive object details are significant to parse the background scene, we thus investigate on explicitly modeling the correlations between object and background to achieve a holistic understanding of an image in the panoptic segmentation task. We introduce a Bidirectional Graph Reasoning Network (BGRNet), which incorporates graph structure into the conventional panoptic segmentation network to mine the intra-modular and intermodular relations within and between foreground things and background stuff classes. In particular, BGRNet first constructs image-specific graphs in both instance and semantic segmentation branches that enable flexible reasoning at the proposal level and class level, respectively. To establish the correlations between separate branches and fully leverage the complementary relations between things and stuff, we propose a Bidirectional Graph Connection Module to diffuse information across branches in a learnable fashion. Experimental results demonstrate the superiority of our BGRNet that achieves the new state-of-the-art performance on challenging COCO and ADE20K panoptic segmentation benchmarks.
Panoptic segmentation requires segments of both things (countable object instances) and stuff (uncountable and amorphous regions) within a single output. A common approach involves the fusion of instance segmentation (for things) and semantic segment ation (for stuff) into a non-overlapping placement of segments, and resolves overlaps. However, instance ordering with detection confidence do not correlate well with natural occlusion relationship. To resolve this issue, we propose a branch that is tasked with modeling how two instance masks should overlap one another as a binary relation. Our method, named OCFusion, is lightweight but particularly effective in the instance fusion process. OCFusion is trained with the ground truth relation derived automatically from the existing dataset annotations. We obtain state-of-the-art results on COCO and show competitive results on the Cityscapes panoptic segmentation benchmark.
104 - Denis Fortun 2014
Handling all together large displacements, motion details and occlusions remains an open issue for reliable computation of optical flow in a video sequence. We propose a two-step aggregation paradigm to address this problem. The idea is to supply loc al motion candidates at every pixel in a first step, and then to combine them to determine the global optical flow field in a second step. We exploit local parametric estimations combined with patch correspondences and we experimentally demonstrate that they are sufficient to produce highly accurate motion candidates. The aggregation step is designed as the discrete optimization of a global regularized energy. The occlusion map is estimated jointly with the flow field throughout the two steps. We propose a generic exemplar-based approach for occlusion filling with motion vectors. We achieve state-of-the-art results in computer vision benchmarks, with particularly significant improvements in the case of large displacements and occlusions.
In this article, we present a very lightweight neural network architecture, trained on stereo data pairs, which performs view synthesis from one single image. With the growing success of multi-view formats, this problem is indeed increasingly relevan t. The network returns a prediction built from disparity estimation, which fills in wrongly predicted regions using a occlusion handling technique. To do so, during training, the network learns to estimate the left-right consistency structural constraint on the pair of stereo input images, to be able to replicate it at test time from one single image. The method is built upon the idea of blending two predictions: a prediction based on disparity estimation, and a prediction based on direct minimization in occluded regions. The network is also able to identify these occluded areas at training and at test time by checking the pixelwise left-right consistency of the produced disparity maps. At test time, the approach can thus generate a left-side and a right-side view from one input image, as well as a depth map and a pixelwise confidence measure in the prediction. The work outperforms visually and metric-wise state-of-the-art approaches on the challenging KITTI dataset, all while reducing by a very significant order of magnitude (5 or 10 times) the required number of parameters (6.5 M).
137 - Yanwei Li , Xinze Chen , Zheng Zhu 2018
This paper studies panoptic segmentation, a recently proposed task which segments foreground (FG) objects at the instance level as well as background (BG) contents at the semantic level. Existing methods mostly dealt with these two problems separatel y, but in this paper, we reveal the underlying relationship between them, in particular, FG objects provide complementary cues to assist BG understanding. Our approach, named the Attention-guided Unified Network (AUNet), is a unified framework with two branches for FG and BG segmentation simultaneously. Two sources of attentions are added to the BG branch, namely, RPN and FG segmentation mask to provide object-level and pixel-level attentions, respectively. Our approach is generalized to different backbones with consistent accuracy gain in both FG and BG segmentation, and also sets new state-of-the-arts both in the MS-COCO (46.5% PQ) and Cityscapes (59.0% PQ) benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا